七年級數(shù)學(xué)下冊教案(熱)
作為一位杰出的老師,常常需要準(zhǔn)備教案,教案有助于順利而有效地開展教學(xué)活動。那么應(yīng)當(dāng)如何寫教案呢?下面是小編收集整理的七年級數(shù)學(xué)下冊教案,歡迎閱讀與收藏。
七年級數(shù)學(xué)下冊教案1
教學(xué)目標(biāo):
1.借助自己熟悉的事物,感受較小數(shù);
2.通過分析、交流、合作,加深對較小數(shù)的認知,發(fā)展數(shù)感;
3.能用科學(xué)技術(shù)法表示絕對值較小的數(shù).
重點、難點:
對較小數(shù)字的信息作合理的解釋和推斷,感受較小數(shù),發(fā)展數(shù)感,用科學(xué)記數(shù)法表示絕對值較小的數(shù).
教學(xué)過程:
一、復(fù)習(xí)提問
1.我們已學(xué)過一百萬有多大,請結(jié)合自己身邊熟悉的事物來描述這些大數(shù)。
2.什么叫科學(xué)記數(shù)法?把下列各數(shù)用科學(xué)記數(shù)法來表示:
。1)2500000(2)753000(3)205000000
二、創(chuàng)設(shè)問題情境引入:
出示“議一議”前三幅圖(讓學(xué)生閱讀,思考)
教師提出問題:一百萬分之一有多少呢?提示本節(jié)內(nèi)容,導(dǎo)入課題“認識百萬分之一”.
三、通過師生共同參與教學(xué)活動,加深對絕對值較小數(shù)的認知.
1.出示投影:“議一議”
珠穆朗瑪峰是世界第一高峰,它的海拔高度約為8844米;
。1)讓學(xué)生計算珠穆朗瑪峰高度的.千分之一是多少?相當(dāng)于幾層樓的高度?
。2)讓學(xué)生計算珠穆朗瑪峰高度的百萬分之一是多少?并直觀地描述這個長度.
2.出示投影:“議一議”
。1)讓學(xué)生計算出天安門面積的百分之一的面積,并用語言描述.
。2)讓學(xué)生計算出天安門面積的萬分之一及百萬分之一的面積,并用語言描述.
教師綜述:
在日常生活中除了會接觸到較大的數(shù),同時也會接觸到較小的數(shù);通過剛才大家的計算,交流體會,感受到一個物體的高度或面積的百萬分之一的大小,使大家認識了百萬分之一.
七年級數(shù)學(xué)下冊教案2
一、情景導(dǎo)入
見書問題
二、用坐標(biāo)表示地理位置
探究:
我們知道,在平面內(nèi)建立直角坐標(biāo)系后,平面內(nèi)的點都可以用坐標(biāo)來表示,為此,要確定區(qū)域內(nèi)一些地點的位置,就要建立直角坐標(biāo)系.
思考:
以什么位置為原點?如何確定x軸、y軸?選取怎樣的比例尺?
小剛家、小強家、小敏家的位置均是以學(xué)校為參照物來描述的,故選學(xué)校位置為原點.
以正東方向為x軸,以正北方向為y軸建立直角坐標(biāo)系.
取比例尺1:10000(即圖中1格相當(dāng)于實際的100米).
點(150,200)就是小剛家的位置.
畫出小強家、小敏家的位置,并標(biāo)明它們的坐標(biāo).
歸納:
注意:
。1)通常選擇比較有名的.地點,或者較居中的位置為坐標(biāo)原點;
。2)坐標(biāo)軸的方向通常以正北為縱軸的正方向,正東為橫軸的正方向;
。3)要標(biāo)明比例尺或坐標(biāo)軸上的單位長度.
三、課堂練習(xí)
下圖是小紅所在學(xué)校的平面示意圖,請你指出學(xué)校各地點的位置.
四、課堂小結(jié)
怎樣利用坐標(biāo)表示地理位置
七年級數(shù)學(xué)下冊教案3
學(xué)習(xí)目標(biāo)
1. 理解有序數(shù)對的應(yīng)用意義,了解平面上確定點的常用方法
2. 培養(yǎng)用數(shù)學(xué)的意識,激發(fā)學(xué)習(xí)興趣.
學(xué)習(xí)重點: 理解有序數(shù)對的意義和作用
學(xué)習(xí)難點: 用有序數(shù)對表示點的位置
學(xué)習(xí)過程
一.問題導(dǎo)入
1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈.
2.地質(zhì)部門在某地埋下一個標(biāo)志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。
你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?
二.概念確定
有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
利用有序數(shù)對,可以很準(zhǔn)確地表示出一個位置。
1.在教室里,根據(jù)座位圖,確定數(shù)學(xué)課代表的`位置
2.教材40頁練習(xí)
三.方法歸類
常見的確定平面上的點位置常用的方法
。1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
。2)以某一點為觀察點,用方位角、目標(biāo)到這個點的距離這兩個數(shù)來確定目標(biāo)所在的位置。
1.A點為原點(0,0),則B點記為(3,1)
2.以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2是某次海戰(zhàn)中敵我雙方艦艇對峙,對我方艦艇來說:
。1)北偏東方向上有哪些目標(biāo)?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?
。2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?
[鞏固練習(xí)]
1.是某城市市區(qū)的一部分,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學(xué)校分別位于市政府的什么方向,怎樣確定他們的位置?
結(jié)合實際問題歸納方法
學(xué)生嘗試描述位置
2. 馬所處的位置為(2,3).
。1) 你能表示出象的位置嗎?
。2) 寫出馬的下一步可以到達的位置。
[小結(jié)]
1. 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業(yè)]
必做題:教科書44頁:1題
七年級數(shù)學(xué)下冊教案4
1.2二元一次方程組的解法
1.2.1代入消元法
教學(xué)目標(biāo)
1.了解解方程組的基本思想是消元。
2.了解代入法是消元的一種方法。
3.會用代入法解二元一次方程組。
4.培養(yǎng)思維的靈活性,增強學(xué)好數(shù)學(xué)的信心。
教學(xué)重點
用代入法解二元一次方程組消元過程。
教學(xué)難點
靈活消元使計算簡便。
教學(xué)過程
一、引入本課。
接上節(jié)課問題,寫出所得一元一次方程及二元一次方程組提問怎樣解二元一次方程組?
二、探究。
比較此列二元一次方程組和一元一次方程,找出它們之間的.聯(lián)系。
xy46.41(xx5.646.4 )xx5.646.4與xy46.4比xy5.62較而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,
可得一元一次方程。想一想本題是否有其它解法?討論:解二元一次方程組基本想法是什么?
15xy9例1:解方程組 2y3x1
討論:怎樣消去一個未知數(shù)?
解出本題并檢驗。
12x3y0例2:解方程組 25x7y1
討論:與例1比較本題中是否有與y3x1類似的方程?
怎樣解本題?
學(xué)生完成解題過程。
草稿紙上檢驗所得結(jié)果。
簡要概括本課中解二元一次方程組的基本想法,基本步驟。介紹代入消元法。(簡稱代入法)
三、練習(xí)
P27.練習(xí)題。
四、小結(jié)
本節(jié)課你有什么收獲?
五、作業(yè)
習(xí)題2.2A組第1題。
后記
七年級數(shù)學(xué)下冊教案5
一.教學(xué)目標(biāo):
1.認知目標(biāo):
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標(biāo):
1)滲透把實際問題抽象成數(shù)學(xué)模型的思想。
2)通過嘗試求解,培養(yǎng)學(xué)生的探索能力。
3.情感目標(biāo):
1)培養(yǎng)學(xué)生細致,認真的學(xué)習(xí)習(xí)慣。
2)在積極的教學(xué)評價中,促進師生的情感交流。
二.教學(xué)重難點
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
三.教學(xué)過程
(一)創(chuàng)設(shè)情景,引入課題
1.本班共有40人,請問能確定男女生各幾人嗎?為什么?
。1)如果設(shè)本班男生x人,女生y人,用方程如何表示?(x+y=40)
。2)這是什么方程?根據(jù)什么?
2.男生比女生多了2人。設(shè)男生x人,女生y人.方程如何表示? x,y的值是多少?
3.本班男生比女生多2人且男女生共40人.設(shè)該班男生x人,女生y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
像這樣,同一個未知數(shù)表示相同的量,我們就應(yīng)用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
。ㄔO(shè)計意圖:從學(xué)生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學(xué))
(二)探究新知,練習(xí)鞏固
1.二元一次方程組的概念
。1)請同學(xué)們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。
[讓學(xué)生看書,引起他們對教材重視。找關(guān)鍵詞,加深他們對概念的了解.]
(2)練習(xí):判斷下列是不是二元一次方程組,學(xué)生作出判斷并要說明理由。
、賦2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(設(shè)計意圖:這一環(huán)節(jié)是本課設(shè)計的重點,為加深學(xué)生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學(xué)生的認知沖突,激發(fā)學(xué)生對“項的次數(shù)的思考”,進而完善血生對二元一次方程概念的理解。)
2.二元一次方程組的解的概念
。1)由學(xué)生給出引例的答案,教師指出這就是此方程組的解。
(2)練習(xí):把下列各組數(shù)的題序填入圖中適當(dāng)?shù)奈恢茫?/p>
方程x+y=0的解,方程2x+3y=2的解,方程組的解。
。3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
。4)練習(xí):已知是方程組的解,求a,b的值。
(三)合作探索,嘗試求解
現(xiàn)在我們一起來探索如何尋找方程組的.解呢?
1.已知兩個整數(shù)x,y,試找出方程組的解.
學(xué)生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學(xué)生利用實物投影,講明自己的解題思路。
一般思路:由一個方程取適當(dāng)?shù)膞y的值,代到另一個方程嘗試.
。ㄔO(shè)計意圖:把課堂還給學(xué)生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學(xué)活動的經(jīng)驗)
2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學(xué)一共買了4盒,剛好有15個球。
(1) 設(shè)該同學(xué)“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關(guān)于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學(xué)生獨立完成,并分析講解。
3.例 已知方程3X+2Y=10
、女(dāng)X=2時,求所對應(yīng)的Y 的值;
、迫∫粋你自己喜歡的數(shù)作為X的值,求所對應(yīng)的Y的值;
、怯煤琗的代數(shù)式表示Y;
⑷用含Y 的代數(shù)式表示X;
⑸當(dāng)X=-2,0 時,所對應(yīng)的Y值是多少;
(設(shè)計意圖:此處設(shè)計主要是想讓學(xué)生形成求二元一次方程的解的一般方法,先讓學(xué)生展示他們的思維過程,再從他們解一元一次方程的重復(fù)步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導(dǎo)學(xué)生體會“用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程。)
(四)課堂小結(jié),布置作業(yè)
1.這節(jié)課學(xué)哪些知識和方法?
2.你還有什么問題或想法需要和大家交流?
3.教材P82
教學(xué)設(shè)計說明:
1.本課設(shè)計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學(xué)生從看書理解二元一次方程組的概念到學(xué)會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學(xué)生成為課堂的真正主體”是本課設(shè)計的主要理念。由學(xué)生給出數(shù)據(jù),得出結(jié)果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學(xué)生,相信他們能在已有的知識上進一步學(xué)習(xí)提高,教師只是點播和引導(dǎo)者。
3.本課在設(shè)計時對教材也進行了適當(dāng)改動。例題方面考慮到數(shù)碼時代,學(xué)生對膠卷已漸失興趣,所以改為學(xué)生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習(xí)的作用,為知識的落實打下軋實的基礎(chǔ),為學(xué)生今后的進一步學(xué)習(xí)做好鋪墊。
七年級數(shù)學(xué)下冊教案6
教學(xué)目標(biāo):
1.掌握數(shù)軸三要素,能正確畫出數(shù)軸.
2.能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù).
教學(xué)重點:
數(shù)軸的概念.
教學(xué)難點:
從直觀認識到理性認識,從而建立數(shù)軸概念.
教與學(xué)互動設(shè)計:
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
課件展示課本P7的“問題”(學(xué)生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數(shù)分別用正數(shù)和負數(shù)來表示,即用一直線上的點把正數(shù)、負數(shù)、0都表示出來,也就是本節(jié)要學(xué)的內(nèi)容——數(shù)軸.
【點撥】(1)引導(dǎo)學(xué)生學(xué)會畫數(shù)軸.
第一步:畫直線,定原點.
第二步:規(guī)定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當(dāng)?shù)拈L度為單位長度(據(jù)情況而定).
第四步:拿出教學(xué)溫度計,由學(xué)生觀察溫度計的結(jié)構(gòu)和數(shù)軸的結(jié)構(gòu)是否有共同之處.
對比思考原點相當(dāng)于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎(chǔ),我們可以來試著定義數(shù)軸:
規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸.
做一做學(xué)生自己練習(xí)畫出數(shù)軸.
試一試你能利用你自己畫的數(shù)軸上的點來表示數(shù)4,1.5,-3,-2,0嗎?
討論若a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結(jié)整數(shù)在數(shù)軸上都能找到點表示嗎?分數(shù)呢?
可見,所有的都可以用數(shù)軸上的點表示;都在原點的左邊,都在原點的右邊.
(三)應(yīng)用遷移,鞏固提高
【例1】下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數(shù)軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
、贁(shù)軸上的點只能表示整數(shù);②數(shù)軸是一條直線;③數(shù)軸上的一個點只能表示一個數(shù);④數(shù)軸上找不到既不表示正數(shù),又不表示負數(shù)的點;⑤數(shù)軸上的`點所表示的數(shù)都是有理數(shù).正確的說法有( )
A.1個B.2個C.3個D.4個
【例4】在數(shù)軸上表示-2和1,并根據(jù)數(shù)軸指出所有大于-2而小于1的整數(shù).
【例5】數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度是1cm,若在這個數(shù)軸上隨意畫出一條長為20xxcm的線段AB,則線段AB蓋住的整點有( )
A.1998個或1999個B.1999個或20xx個
C.20xx個或20xx個D.20xx個或20xx個
(四)總結(jié)反思,拓展升華
數(shù)軸是非常重要的工具,它使數(shù)和直線上的點建立了一一對應(yīng)的關(guān)系.它揭示了數(shù)和形的內(nèi)在聯(lián)系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數(shù)軸的三要素,正確畫出數(shù)軸.提醒大家,所有的有理數(shù)都可以用數(shù)軸上的相關(guān)點來表示,但反過來并不成立,即數(shù)軸上的點并不都表示有理數(shù).
(五)課堂跟蹤反饋
夯實基礎(chǔ)
1.規(guī)定了、 、的直線叫做數(shù)軸,所有的有理數(shù)都可從用上的點來表示.
2.P從數(shù)軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數(shù)是.
3.把數(shù)軸上表示2的點移動5個單位長度后,所得的對應(yīng)點表示的數(shù)是( )
A.7 B.-3
C.7或-3 D.不能確定
4.在數(shù)軸上,原點及原點左邊的點所表示的數(shù)是( )
A.正數(shù)B.負數(shù)
C.不是負數(shù)D.不是正數(shù)
5.數(shù)軸上表示5和-5的點離開原點的距離是,但它們分別表示.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是和.
7.畫出一條數(shù)軸,并把下列數(shù)表示在數(shù)軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數(shù)軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數(shù)軸上,最多能覆蓋個整數(shù)點.
9.下列四個數(shù)中,在-2到0之間的數(shù)是( )
A.-1 B.1 C.-3 D.3
七年級數(shù)學(xué)下冊教案7
教學(xué)目標(biāo)
1.經(jīng)歷從性質(zhì)公理推出性質(zhì)的過程;
2.感受原命題與逆命題,從而了解平行線的性質(zhì)公理與判定公理的區(qū)別,能在推理過程正確使用。
對話探索設(shè)計
〖探索1反過來也成立嗎
過去我們學(xué)過:如果兩個數(shù)的和為0,這兩個數(shù)互為相反數(shù)。反過來,如果兩個數(shù)互為相反數(shù),那么這兩個數(shù)的和為0.顯然,這兩個句子都是正確的。
現(xiàn)在換一個例子:如果一個整數(shù)個位上的數(shù)字是5,那么它一定能夠被5整除。對嗎?這句話反過來怎么說?對不對?
結(jié)論:如果一個句子是正確的,反過來說(因果對調(diào)),就未必正確。
〖探索2
上一節(jié)課,我們學(xué)過:同位角相等,兩直線平行。反過來怎么說?猜一猜:它還是對的嗎?
〖探索3
(1)用三角尺畫兩條平行線a、b.說一說:不利用第三條直線能畫出兩條平行線嗎?請畫出第三條直線(把它記為c),并說明判定這兩條直線平行的根據(jù)(公理或定理);
(2)在(1)中再畫一條直線d與直線a、b都相交,找出其中的`一對同位角,用量角器量出它們的度數(shù)驗證你原來的猜測。
結(jié)論:兩條平行線被第三條直線所截,同位角相等。
與平行線的判定公理一樣,這個結(jié)論也是基本事實,即人們在長期實踐中出來的結(jié)論,我們把它叫做平行線的性質(zhì)公理,它是平行線的第一條性質(zhì)。
〖探索4
如圖,請畫直線c截兩條平行線a、b;再在圖中找出一對內(nèi)錯角。同學(xué)們一定能從直覺判斷這對內(nèi)錯角也是相等的。也就是說:
兩條平行線被第三條直線所截,內(nèi)錯角相等。它是平行線的第二條性質(zhì)。
現(xiàn)在我們來試一試:如何根據(jù)性質(zhì)1說出性質(zhì)2成立的道理。
如圖,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(對頂角相等),
∴∠1=∠2(___________).
以上過程說明了:由性質(zhì)1可以得出性質(zhì)2.
〖探索5
我們學(xué)過判定兩直線平行的第三種方法:
兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。(簡單地說:同旁內(nèi)角互補,兩直線平行。)
把這條定理反過來,可以簡單說成_____________________.
猜一猜:把這條定理反過來以后,還成立嗎?
〖練習(xí)
P22練習(xí)
說一說:求這三個角的度數(shù)分別根據(jù)平行線的哪一條性質(zhì)?
〖作業(yè)
P25.1、2、3
〖補充作業(yè)
如圖:直線a、b被直線c所截,
(1)若a∥b,可以得到∠1=∠2.根據(jù)什么?
(2)若∠1=∠2,可以得到a∥b.根據(jù)什么?
(注意:(1)、(2)的根據(jù)一樣嗎?)
七年級數(shù)學(xué)下冊教案8
一、教材分析
同底數(shù)冪的乘法是北師大版初中數(shù)學(xué)七年級(下)第一章整式的乘除第一節(jié)的內(nèi)容。在此之前,學(xué)生已經(jīng)掌握了用字母表示數(shù)的技能,會判斷同類項、合并同類項,同時在學(xué)習(xí)了有理數(shù)乘方運算后,知道了求n個相同數(shù)a的積的運算叫做乘方,乘方的結(jié)果叫做冪,即,在中,a叫底數(shù),n叫指數(shù),這些基礎(chǔ)知識為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。學(xué)生已經(jīng)學(xué)習(xí)了冪的概念,具備了冪的運算的方法,為本課打下了基礎(chǔ),同底數(shù)冪的乘法運算法則的學(xué)習(xí)有助于培養(yǎng)訓(xùn)練學(xué)生的數(shù)感與符號感,同時也發(fā)展了他們的推理能力和有條理的表達能力,而本課內(nèi)容又是學(xué)習(xí)整式除法及整式的乘除的基礎(chǔ)。
二、教學(xué)目標(biāo)
知識與技能:讓學(xué)生在現(xiàn)實背景中進行體會同底數(shù)冪的乘法運算,并能解決一些實際問題。
過程與方法:經(jīng)歷在實際背景中探索同底數(shù)冪乘法運算性質(zhì)的過程,進一步體會冪的意義,經(jīng)歷觀察、歸納、猜想、解釋等數(shù)學(xué)活動,增強學(xué)生的數(shù)感符號感,體驗解決問題方法的多樣性,發(fā)展合作交流能力,發(fā)展學(xué)生的合情推理和演繹推理能力以及有條理的表達能力。
情感與態(tài)度:在解決問題的過程中了解數(shù)學(xué)的價值,滲透數(shù)學(xué)公式的簡潔美與和諧美。培養(yǎng)學(xué)生觀察、概括、抽象、歸納的能力。體會數(shù)學(xué)的抽象性、嚴謹性和廣泛性。
三、教學(xué)重難點
教學(xué)重點:同底數(shù)冪乘法運算法則及其應(yīng)用。
教學(xué)難點:同底數(shù)冪乘法運算法則的探索及靈活運用。
突破方法:通過實例,讓學(xué)生感覺到學(xué)習(xí)同底數(shù)冪乘法運算法則的必要性,從而引起學(xué)生的興趣和注意力。然后引導(dǎo)學(xué)生利用冪的意義,將同底數(shù)冪相乘轉(zhuǎn)化為幾個相同因式相乘。讓學(xué)生通過思考、討論、交流、歸納,個人思考、小組合作探究等方式,進行知識遷移,總結(jié)出同底數(shù)冪乘法運算法則。讓學(xué)生在探究問題的過程中理解轉(zhuǎn)化的數(shù)學(xué)思想,初步理解“特殊—一般—特殊”的認知規(guī)律,養(yǎng)成用數(shù)學(xué)的思維和方法解決問題的習(xí)慣。
四、教學(xué)過程設(shè)計
本課時設(shè)計了七個教學(xué)環(huán)節(jié):舊知鏈接、情境引入、歸納法則、探索拓廣、反饋延伸、課堂小結(jié)、布置作業(yè)。
第一環(huán)節(jié)舊知鏈接
活動內(nèi)容:1、前面我們學(xué)習(xí)了乘方,那么乘方的意義是什么?并用字母表示出來(學(xué)生課前將數(shù)學(xué)符號表述寫黑板上,上課只口答文字描述。)
2、指出下列各式的底數(shù)與指數(shù):54,x3 ,(-2)2,-22 。
設(shè)計意圖:通過此活動,讓學(xué)生回憶冪與乘法之間關(guān)系,即,從而為下一步探索得到同底數(shù)冪的乘法法則提供了依據(jù),培養(yǎng)學(xué)生知識遷移的能力,為探究新知做好知識準(zhǔn)備。
第二環(huán)節(jié)情境引入
活動內(nèi)容:1、光在真空中的速度大約是3×108m/s,太陽系以外距離地球最近的恒星是比鄰星,它發(fā)出的光到達地球大約需要4.22年。一年以3×107秒計算,比鄰星與地球的距離約為多少千米?
2、.計算下列各式:
(1)102×103;
。2)105×108;
(3)10m×10n(m,n都是正整數(shù)).你發(fā)現(xiàn)了什么?
3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整數(shù))
(學(xué)生獨立思考后,小組內(nèi)交流,進行推導(dǎo)嘗試,力爭獨立得出結(jié)論。.教師鼓勵算法的多樣化。 )
設(shè)計意圖:從實際問題情境中建立數(shù)學(xué)模型,讓學(xué)生感受到數(shù)學(xué)來源于生活,自然地體會到學(xué)習(xí)同底數(shù)冪的乘法的必要性。鼓勵學(xué)生利用已學(xué)知識解決問題,善于將陌生問題轉(zhuǎn)化為熟悉的問題,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想及重視算理的習(xí)慣。
第三環(huán)節(jié)新知探究,歸納法則
活動內(nèi)容一:你能用字母表示同底數(shù)冪的乘法運算法則并說明理由嗎?
。1)將引例中的各算式改寫成乘法的字母算式。
。2)觀察計算結(jié)果有什么規(guī)律?
。3)試猜想:am . an=( ) (自主完成改寫算式,觀察思考,并進行猜想,發(fā)表見解。)
。4)驗證你的猜想。
(5)小結(jié)歸納法則。
(小組討論,相互交流。鼓勵學(xué)生用進行驗證。對比同底數(shù)冪的乘法法則,引導(dǎo)學(xué)生用語言、數(shù)學(xué)符號兩種方式表述,便于理解和記憶,互相補充。)
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。
am· an=am+n(m,n是正整數(shù))
設(shè)計意圖:學(xué)生經(jīng)歷觀察、猜想、驗證等探究活動,體會知識的生成過程,并感悟從特殊到一般的研究解決問題的方法。在驗證、小結(jié)歸納的活動中,進一步發(fā)展符號、化歸等推理能力和有條理的表達能力。
活動內(nèi)容二:am · an · ap等于什么?你是怎樣做的?與同伴交流
am· an· ap = am+n+p
法則應(yīng)用注意事項:(1)等號左邊是同底數(shù)冪相乘法。
。2)等號兩邊的同底相同。
。3)等號右邊的指數(shù)等于左邊的指數(shù)和。
。4)公式中的底數(shù)a可以表示數(shù)、字母、單項式、多項式等整式。
設(shè)計意圖:讓學(xué)生明白同底數(shù)是三個或三個以上時相乘,同底數(shù)冪的乘法法則也成立,培養(yǎng)學(xué)生的聯(lián)系拓廣能力。
第四環(huán)節(jié)活學(xué)活用
活動內(nèi)容一:
例1、計算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2
。3)-x3.x5(4)b2m.b2m+1
(學(xué)生口述計算的'每步過程和依據(jù),師板書(1)解題過程。強調(diào)運算方法;強調(diào)字母a的指數(shù);強調(diào)括號問題。其余自主完成計算,板演練習(xí)。集體講評糾錯。)
設(shè)計意圖:規(guī)范解題步驟的同時,進一步體會算理,并深刻地理解同底數(shù)冪的乘法運算法則,達到熟練、準(zhǔn)確運用法則進行計算的目的。
活動內(nèi)容二:
例2光在真空中的速度約為3×108m/s,太陽光照射到地球大約需要5×102s.地球距離太陽大約有多遠?
(獨立審題,認真計算,交流討論,發(fā)表見解。小組內(nèi)交流方法。小結(jié)歸納,相互補充。)
設(shè)計意圖:應(yīng)用同底數(shù)冪的乘法運算法則解決實際問題,靈活運用同底數(shù)冪的乘法法則,同時培養(yǎng)學(xué)生用心審題的好習(xí)慣。
第五環(huán)節(jié)鞏固練習(xí)
活動內(nèi)容:課本隨堂練習(xí)
1.計算:
。1)52×57;(2)7×73×72;
。3)-x2·x3;(4)(-c)3·(-c)m.
2.一種電子計算機每秒可做4×109次運算,它工作5×102s可做多少次運算?
3.解決本節(jié)課一開始比鄰星到地球的距離問題.
(小組討論、交流、展示。自主探究完成。)
設(shè)計意圖:以小組討論的方式突破難點,在交流過程中理解、尊重他人意見,從交流中獲得成功的體驗,培養(yǎng)學(xué)生勇于探索的精神。
第六環(huán)節(jié)課堂小結(jié)
活動內(nèi)容:這節(jié)課你學(xué)到了哪些知識及哪些數(shù)學(xué)思想?
(鼓勵學(xué)生多角度地對本節(jié)課的學(xué)習(xí)進行小結(jié)、評價,大膽發(fā)表見解和疑問。)
設(shè)計意圖:在知識的整理中拓展學(xué)生的思維,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,教師予以鼓勵,激發(fā)學(xué)生的學(xué)習(xí)興趣與自信心。
第七環(huán)節(jié)布置作業(yè)
習(xí)題7.1A組1.B組1、2、3
設(shè)計意圖:作業(yè)分層布置,因材施教,培養(yǎng)學(xué)生的自信心。
四、教學(xué)設(shè)計反思:
1.培養(yǎng)學(xué)生數(shù)學(xué)思想,讓學(xué)生掌握方法
在教學(xué)過程中讓學(xué)生多觀察,多思考,多討論,給他們時間空間,教師在教學(xué)中應(yīng)當(dāng)有意識、有計劃地設(shè)計教學(xué)活動,引導(dǎo)學(xué)生體會到數(shù)學(xué)知識之間的聯(lián)系,感受轉(zhuǎn)化的數(shù)學(xué)思想和整體的數(shù)學(xué)思想,不斷豐富解決問題的策略,提高解決問題的能力。
2.改進教學(xué)和評價方式,為學(xué)生提供自主探索的機會
數(shù)學(xué)教學(xué)活動,應(yīng)激發(fā)學(xué)生興趣,調(diào)動學(xué)生積極性,引發(fā)學(xué)生的數(shù)學(xué)思考;學(xué)生學(xué)習(xí)應(yīng)當(dāng)是一個生動活潑的、主動地和富有個性的過程,因此我們的數(shù)學(xué)課堂應(yīng)該努力改進教學(xué)和評價的方式,給學(xué)生提供更多自主探索的機會。課上通過學(xué)生自主講解展示學(xué)習(xí)效果,教師只根據(jù)學(xué)生自學(xué)的情況點撥部分難點即可。
七年級數(shù)學(xué)下冊教案9
教學(xué)目標(biāo)
1,通過對數(shù)“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念;
2,利用正負數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)
3,進一步體驗正負數(shù)在生產(chǎn)生活實際中的廣泛應(yīng)用,提高解決實際問題的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點
深化對正負數(shù)概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學(xué)過程
(師生活動)設(shè)計理念
知識回顧與深化回顧:上一節(jié)課我們知道了在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負數(shù)來表示.這就是說:數(shù)的范圍擴大了(數(shù)有正數(shù)和負數(shù)之分).那么,有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?
問題1:有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?
學(xué)生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的`分
界,是基準(zhǔn).這個道理學(xué)生并不容易理解,可視學(xué)生的討論情況作些啟發(fā)和引導(dǎo),下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來表示,零下溫度用負數(shù)來表示。那么某一天某地的溫度是
零上7℃,最低溫度是零下5℃時,就應(yīng)該表示為+7℃
和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負數(shù).
那么當(dāng)溫度是零度時,我們應(yīng)該怎樣表示呢?(表示為0℃),它是正數(shù)還是負數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負數(shù)?
問題2:引入負數(shù)后,數(shù)按照“兩種相反意義的量”來分,可以分成幾類?“數(shù)0耽不是正數(shù),也不是負數(shù)”也應(yīng)看作是負數(shù)定義的一部分.在引入
負數(shù)后,0除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界.了解。的這一層意義,也有助于對正負數(shù)的理解;且對數(shù)的順利擴張和有理毅概念的建立都有幫助。
所舉的例子,要考慮學(xué)生的可接受性.“數(shù)0既不是正數(shù),也不是負數(shù)”應(yīng)從相反意義的1這個角度來說明.這個問題只要初步認識即
可,不必深究.
分析問題
解決問題問題3:教科書第6頁例題
說明:這是一個用正負數(shù)描述向指定方向變化情況的例子,通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負數(shù)表示。這種描述在實際生活中有廣泛的應(yīng)用,應(yīng)予以重視。教學(xué)中,應(yīng)讓學(xué)生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數(shù)來表示增長的量。
歸納:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:
水位上升-3m,實際表示什么意思呢?
收人增加-10%,實際表示什么意思呢?
等等。
可視教學(xué)中的實際情況進行補充.
這種用正負數(shù)描述向指定方向變化情況的例子,在實際生活中有廣泛的應(yīng)用,按題意找準(zhǔn)哪種
意義的量應(yīng)該用正數(shù)表示是解題的關(guān)健.這種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現(xiàn)在
不必向?qū)W生提出.
鞏固練習(xí)教科書第6頁練習(xí)
閱讀思考
教科書第8頁閱讀與思考是正負數(shù)應(yīng)用的很好例子,要花時間讓學(xué)生討論交流
小結(jié)與作業(yè)
課堂小結(jié)以問題的形式,要求學(xué)生思考交流:
1,引人負數(shù)后,你是怎樣認識數(shù)0的,數(shù)0的意義有哪些變化?
2,怎樣用正負數(shù)表示具有相反意義的量?
(用正數(shù)表示其中一種意義的量,另一種量用負數(shù)表示;特別地,在用正負數(shù)表示向指定方向變化的量時,通常把向指定方向變化的量規(guī)定為正數(shù),而把向指定方向的相反方向變化的量規(guī)定為負數(shù).)
本課作業(yè)1,必做題:教科書第7頁習(xí)題1.1第3,6,7,8題
2,選做題:教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)
1,本課主要目的是加深對正負數(shù)概念的理解和用正負數(shù)表示實際生產(chǎn)生活中的向指
定方向變化的量。
2,“數(shù)0既不是正數(shù),也不是負數(shù),’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應(yīng)看作是負數(shù)定義的一部分.在引人負數(shù)后,除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界。了解0的這一層意義,也有助于對正負數(shù)的理解,且對數(shù)的順利擴張和有理數(shù)概念的建立都有幫助.由于上節(jié)課的重點是建立兩種相反意義量的概念,考慮到學(xué)生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數(shù)表示(向指定方向變化的)量的實際應(yīng)用,用這種方式描述的例子很多,要盡量使學(xué)生理解.
4,本設(shè)計體現(xiàn)了學(xué)生自主學(xué)習(xí)、交流討論的教學(xué)理念,教學(xué)中要讓學(xué)生體驗數(shù)學(xué)知識在實際中的合理應(yīng)用,在體驗中感悟和深化知識.通過實際例子的學(xué)習(xí)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
七年級數(shù)學(xué)下冊教案10
一、教學(xué)目標(biāo)
1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。
二、教學(xué)重難點
教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。
三、教法
主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。
四、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境激活思維
1。學(xué)生觀看鐘祥二中相關(guān)背景視頻
意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。
2。聯(lián)系實際,提出問題。
問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。
學(xué)生畫圖后提問:
1。馬路用什么幾何圖形代表?(直線)
2。文中相關(guān)地點用什么代表?(直線上的點)
3。學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)
4。你是如何確定問題中各地點的位置的?(方向和距離)
設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?
師生活動:
學(xué)生思考后回答解決方法,學(xué)生代表畫圖。
學(xué)生畫圖后提問:
1。0代表什么?
2。數(shù)的符號的實際意義是什么?
3。—75表示什么?100表示什么?
設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。
問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?
設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導(dǎo)學(xué)生用三要素表達,為定義數(shù)軸的概念提供直觀基礎(chǔ)。
問題4:你能說說上述2個實例的共同點嗎?
設(shè)計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。
。ǘ┳灾鲗W(xué)習(xí)探究新知
學(xué)生活動:帶著以下問題自學(xué)課本第8頁:
1。什么樣的直線叫數(shù)軸?它具備什么條件。
2。如何畫數(shù)軸?
3。根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?
4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
師生活動:
學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。
至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)
、贁(shù)軸的定義。
、跀(shù)軸三要素。
練習(xí):(媒體展示)
1。判斷下列圖形是否是數(shù)軸。
2。口答:數(shù)軸上各點表示的數(shù)。
3。在數(shù)軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。
。ㄈ┬〗M合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和—a的點進行同樣的討論。
設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。
。ㄋ模w納總結(jié)反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:
1。什么是數(shù)軸?
2。數(shù)軸的“三要素”各指什么?
3。數(shù)軸的畫法。
設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
(五)目標(biāo)檢測設(shè)計
1。下列命題正確的是()
A。數(shù)軸上的點都表示整數(shù)。
B。數(shù)軸上表示4與—4的`點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C。數(shù)軸包括原點與正方向兩個要素。
D。數(shù)軸上的點只能表示正數(shù)和零。
2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3。畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4。在數(shù)軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。
五、板書
1。數(shù)軸的定義。
2。數(shù)軸的三要素(圖)。
3。數(shù)軸的畫法。
4。性質(zhì)。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1。什么樣的直線叫數(shù)軸?
定義:規(guī)定了_________、________、_________的直線叫數(shù)軸。
數(shù)軸的三要素:_________、_________、__________。
2。畫數(shù)軸的步驟是什么?
3。“原點”起什么作用?__________
4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
練習(xí):
1。畫一條數(shù)軸
2。在你畫好的數(shù)軸上表示下列有理數(shù):1。5,—2,—2。5,2,2。5,0,—1。5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的____邊,與原點的距離是____個單位長度;表示數(shù)—a的點在原點的____邊,與原點的距離是____個單位長度。
練習(xí):
1。數(shù)軸上表示—3的點在原點的_______側(cè),距原點的距離是______;表示6的點在原點的______側(cè),距原點的距離是______;兩點之間的距離為_______個單位長度。
2。距離原點距離為5個單位的點表示的數(shù)是________。
3。在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是________。
附:目標(biāo)檢測
1。下列命題正確的是()
A。數(shù)軸上的點都表示整數(shù)。
B。數(shù)軸上表示4與—4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C。數(shù)軸包括原點與正方向兩個要素。
D。數(shù)軸上的點只能表示正數(shù)和零。
2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù)。列舉到原點的距離小于3的所有整數(shù)。
3。畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4。在數(shù)軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。
七年級數(shù)學(xué)下冊教案11
教學(xué)目標(biāo):
1、知識與技能
。1)通過實例,感受引入負數(shù)的必要性和合理性,能應(yīng)用正負數(shù)表示生活中具有相反意義的量。
(2)理解有理數(shù)的意義,體會有理數(shù)應(yīng)用的廣泛性。
2、過程與方法
通過實例的引入,認識到負數(shù)的產(chǎn)生是來源于生產(chǎn)和生活,會用正、負數(shù)表示具有相反意義的量,能按要求對有理數(shù)進行分類。
重點、難點:
1、重點:正數(shù)、負數(shù)有意義,有理數(shù)的意義,能正確對有理數(shù)進行分類。
2、難點:對負數(shù)的理解以及正確地對有理數(shù)進行分類。
教學(xué)過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新課
大家知道,數(shù)學(xué)與數(shù)是分不開的,現(xiàn)在我們一起來回憶一下,小學(xué)里已經(jīng)學(xué)過哪些類型的數(shù)?
學(xué)生答后,教師指出:小學(xué)里學(xué)過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分數(shù)和零(小數(shù)包括在分數(shù)之中),它們都是由于實際需要而產(chǎn)生的
為了表示一個人、兩只手、……,我們用到整數(shù)1,2,……
為了表示“沒有人”、“沒有羊”、……,我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數(shù)、零或分數(shù)、小數(shù)表示。
二、合作交流,解讀探究
1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學(xué)學(xué)過的數(shù),都記作5℃,就不能把它們區(qū)別清楚。它們是具有相反意義的`兩個量。
現(xiàn)實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的!斑\進”和“運出”,其意義是相反的。
同學(xué)們能舉例子嗎?
學(xué)生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?
待學(xué)生思考后,請學(xué)生回答、評議、補充。
教師小結(jié):同學(xué)們成了發(fā)明家。甲同學(xué)說,用不同顏色來區(qū)分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學(xué)說,在數(shù)字前面加不同符號來區(qū)分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數(shù)學(xué)家就曾經(jīng)采用不同的顏色來區(qū)分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。
現(xiàn)在,數(shù)學(xué)中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學(xué)里學(xué)過的數(shù)前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。
讓學(xué)生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
教師講解:什么叫做正數(shù)?什么叫做負數(shù)?強調(diào),數(shù)0既不是正數(shù),也不是負數(shù),它是正、負數(shù)的界限,表示“基準(zhǔn)”的數(shù),零不是表示“沒有”,它表示一個實際存在的數(shù)量。并指出,正數(shù),負數(shù)的“+”“—”的符號是表示性質(zhì)相反的量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號。
2、給出新的整數(shù)、分數(shù)概念
引進負數(shù)后,數(shù)的范圍擴大了。過去我們說整數(shù)只包括自然數(shù)和零,引進負數(shù)后,我們把自然數(shù)叫做正整數(shù),自然數(shù)前加上負號的數(shù)叫做負整數(shù),因而整數(shù)包括正整數(shù)(自然數(shù))、負整數(shù)和零,同樣分數(shù)包括正分數(shù)、負分數(shù)。
3、給出有理數(shù)概念
整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。
4、有理數(shù)的分類
為了便于研究某些問題,常常需要將有理數(shù)進行分類,需要不同,分類的方法也常常不同根據(jù)有理數(shù)的定義可將有理數(shù)分成兩類:整數(shù)和分數(shù)。有理數(shù)還有沒有其他的分類方法?
待學(xué)生思考后,請學(xué)生回答、評議、補充。
教師小結(jié):按有理數(shù)的符號分為三類:正有理數(shù)、負有理數(shù)和零。在有理數(shù)范圍內(nèi),正數(shù)和零統(tǒng)稱為非負數(shù)。向?qū)W生強調(diào):分類可以根據(jù)不同需要,用不同的分類標(biāo)準(zhǔn),但必須對討論對象不重不漏地分類。
三、總結(jié)反思
引導(dǎo)學(xué)生回答如下問題:本節(jié)課學(xué)習(xí)了哪些基本內(nèi)容?學(xué)習(xí)了什么數(shù)學(xué)思想方法?應(yīng)注意什么問題?
由于實際生活中存在著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負數(shù)。正數(shù)是大于0的數(shù),負數(shù)就是在正數(shù)前面加上“—”號的數(shù),負數(shù)小于0。0既不是正數(shù),也不是負數(shù),0可以表示沒有,也可以表示一個實際存在的數(shù)量,如0℃。
四、課后作業(yè):課本P5習(xí)題1。1A第1、2、4題。
七年級數(shù)學(xué)下冊教案12
課型:
新課:
備課人:
審核人:
學(xué)習(xí)目標(biāo)
1、經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力。
2.分析題意說理過程,能靈活地選用直線平行的方法進行說理。
學(xué)習(xí)重點:直線平行的條件的.應(yīng)用。
學(xué)習(xí)難點:選取適當(dāng)判定直線平行的方法進行說理是重點也是難點。
一、學(xué)習(xí)過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習(xí):
1、如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
。ǖ1題)(第2題)
2、如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求。
二、選擇題。
1、如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2、如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題。
1、你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法。
2、已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由。
七年級數(shù)學(xué)下冊教案13
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點
1、了解有理數(shù)除法的定義。
2、理解倒數(shù)的意義。
3、掌握有理數(shù)除法法則,會進行運算。
(二)能力訓(xùn)練點
1、通過有理數(shù)除法法則的導(dǎo)出及運算,讓學(xué)生體會轉(zhuǎn)化思想。
2、培養(yǎng)學(xué)生運用數(shù)學(xué)思想指導(dǎo)思維活動的能力。
。ㄈ┑掠凉B透點
通過學(xué)習(xí)有理數(shù)除法運算、感知數(shù)學(xué)知識具有普遍聯(lián)系性、相互轉(zhuǎn)化性。
(四)美育滲透點
把小學(xué)算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識體系的完整美。
二、學(xué)法引導(dǎo)
1、教學(xué)方法:遵循啟發(fā)式教學(xué)原則,注意創(chuàng)設(shè)問題情境,精心構(gòu)思啟發(fā)導(dǎo)語并及時點撥,使學(xué)生主動發(fā)展思維和能力。
2、學(xué)生學(xué)法:通過練習(xí)探索新知→歸納除法法則→鞏固練習(xí)
三、重點、難點、疑點及解決辦法
1、重點:除法法則的靈活運用和倒數(shù)的概念。
2、難點:有理數(shù)除法確定商的符號后,怎樣根據(jù)不同的情況來取適當(dāng)?shù)姆椒ㄇ笊痰慕^對值。
3、疑點:對零不能作除數(shù)與零沒有倒數(shù)的理解。
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀、自制膠片、彩粉筆。
六、師生互動活動設(shè)計
教師出示探索性練習(xí),學(xué)生討論歸納除法法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成。
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
師:以上我們學(xué)習(xí)了有理數(shù)的乘法,這節(jié)我們應(yīng)該學(xué)習(xí),板書課題。
教法說明
同小學(xué)算術(shù)中除法一樣—除以一個數(shù)等于乘以這個數(shù)的倒數(shù),所以必須以學(xué)好求一個有理數(shù)的倒數(shù)為基礎(chǔ)學(xué)習(xí)。
。ǘ┨剿餍轮v授新課
1、倒數(shù)。
(出示投影1)
4×()=1;×()=1;0.5×()=1;
0×()=1;—4×()=1;×()=1。
學(xué)生活動:口答以上題目。
教法說明
在有理數(shù)乘法的.基礎(chǔ)上,學(xué)生很容易地做出這幾個題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負數(shù),又有整數(shù)、分數(shù),在數(shù)的變化中,讓學(xué)生回憶、體會出求各種數(shù)的倒數(shù)的方法。
師問:兩個數(shù)乘積是1,這兩個數(shù)有什么關(guān)系?
學(xué)生活動:乘積是1的兩個數(shù)互為倒數(shù)。(板書)
師問:0有倒數(shù)嗎?為什么?
學(xué)生活動:通過題目0×()=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù)。
師:引入負數(shù)后,乘積是1的兩個負數(shù)也互為倒數(shù),如—4與,與互為倒數(shù),即的倒數(shù)是。
提出問題:根據(jù)以上題目,怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù)?
教法說明
教師注意創(chuàng)設(shè)問題情境,讓學(xué)生參與思考,循序漸進地引出,對于有理數(shù)也有倒數(shù)是。對于怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù),學(xué)生還很難總結(jié)出方法,提出這個問題是讓學(xué)生帶著問題來做下組練習(xí)。
。ǔ鍪就队2)
求下列各數(shù)的倒數(shù):
。1);(2);(3);
(4);(5)—5;(6)1。
學(xué)生活動:通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分數(shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分數(shù)再求。
2。計算:8÷(—4)。
計算:8×()=?(—2)
8÷(—4)=8×()。
再嘗試:—16÷(—2)=?—16×()=?
師:根據(jù)以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?
學(xué)生活動:同桌互相討論。(一個學(xué)生回答)
師強調(diào)后板書:
[板書]
教法說明
通過學(xué)生親自演算和教師的引導(dǎo),對有理數(shù)除法法則及字母表示有了非常清楚的認識,教師放手讓學(xué)生總結(jié)法則,尤其是字母表示,訓(xùn)練學(xué)生的歸納及口頭表達能力。
。ㄈ﹪L試反饋,鞏固練習(xí)
師在黑板上出示例題。
計算(1)(—36)÷9,(2)()÷()。
學(xué)生嘗試做此題目。
(出示投影3)
1、計算:
(1)(—18)÷6;(2)(—63)÷(—7);(3)(—36)÷6;
。4)1÷(—9);(5)0÷(—8);(6)16÷(—3)。
2、計算:
。1)()÷();(2)(—6.5)÷0.13;
(3)()÷();(4)÷(—1)。
學(xué)生活動:
1題讓學(xué)生搶答,教師用復(fù)合膠片顯示結(jié)果。
2題在練習(xí)本上演示,兩個同學(xué)板演(教師訂正)。
教法說明
此組練習(xí)中兩個題目都是對的直接應(yīng)用。1題是整數(shù),利用口答形式訓(xùn)練學(xué)生速算能力。2題是小數(shù)、分數(shù)略有難度,要求學(xué)生自行演算,加強運算的準(zhǔn)確性,2題(2)小題必須把小數(shù)都化成分數(shù)再轉(zhuǎn)化成乘法來計算。
提出問題:
。1)兩數(shù)相除,商的符號怎樣確定,商的絕對值呢?
。2)0不能做除數(shù),0做被除數(shù)時商是多少?
學(xué)生活動:分組討論,1—2個同學(xué)回答。
[板書]
2、兩數(shù)相除,同號得正,異號得負,并把絕對值相除。
0除以任何不等于0的數(shù),都得0。
教法說明
通過上組練習(xí)的結(jié)果,不難看出與有理數(shù)乘法有類似的法則,這個法則的得出為計算有理數(shù)除法又添了一種方法,這時教師要及時指出,在做有理數(shù)除法的題目時,要根據(jù)具體情況,靈活運用這兩種方法。
。ㄋ模┳兪接(xùn)練,培養(yǎng)能力
回顧例1計算:
。1)(—36)÷9;(2)()÷()。
提出問題:每個題目你想采用哪種法則計算更簡單?
學(xué)生活動:
。1)題采用兩數(shù)相除,異號得負并把絕對值相除的方法較簡單。
。2)題仍用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)較簡單。
提出問題:—36:9=?;:()=?它們都屬于除法運算嗎?
學(xué)生活動:口答出答案。
(出示投影4)
例2化簡下列分數(shù)
例3計算
。1)()÷(—6);
。2)—3.5÷×();
(3)(—6)÷(—4)×()。
學(xué)生活動:
例2讓學(xué)生口答,例3全體同學(xué)獨立計算,三個學(xué)生板演。
教法說明
例2是檢查學(xué)生對有理數(shù)除法法則的靈活運用能力,并滲透了除法、分數(shù)、比可互相轉(zhuǎn)化,并且通過這種轉(zhuǎn)化,常常可能簡化計算。例3培養(yǎng)學(xué)生分析問題的能力,優(yōu)化學(xué)生思維品質(zhì):
如在(1)()÷(—6)中。
根據(jù)方法①()÷(—6)=×()=。
根據(jù)方法②()÷(—6)=(24+)×=4+=。
讓學(xué)生區(qū)分方法的差異,點明方法②非常簡便,肯定當(dāng)除法轉(zhuǎn)化成乘法時,可以利用有理數(shù)乘法運算律簡化運算。(2)(3)小題也是如此。
。ㄎ澹w納小結(jié)
師:今天我們學(xué)習(xí)了及倒數(shù)的概念,回答問題:
1的倒數(shù)是__________________();
學(xué)生活動:分組討論。
教法說明
對這節(jié)課全部知識點的回顧不是教師單純地總結(jié),而是讓學(xué)生在思考回答的過程中自己把整節(jié)內(nèi)容進行了梳理,并且上升到了用字母表示的數(shù)學(xué)式子,逐步培養(yǎng)學(xué)生用數(shù)學(xué)語言表達數(shù)學(xué)規(guī)律的能力。
八、隨堂練習(xí)
1、填空題
。1)的倒數(shù)為__________,相反數(shù)為____________,絕對值為___________
。2)(—18)÷(—9)=_____________;
。3)÷(—2.5)=_____________;
。4);
。5)若,是;
(6)若、互為倒數(shù),則;
(7)或、互為相反數(shù)且,則,;
。8)當(dāng)時,有意義;
。9)當(dāng)時,;
。10)若,則,和符號是_________,___________。
2、計算
(1)—4.5÷()×;
。2)(—12)÷〔(—3)+(—15)〕÷(+5)。
九、布置作業(yè)
(一)必做題:
1、仿照例1、例2自編2道題,同桌交換解答。
2、計算:(1)()×()÷();
。2)—6÷(—0.25)×。
3、當(dāng),時求的值。
。ǘ┻x做題:
1、填空:用“>”“
。1)如果,則,;
。2)如果,則,;
(3)如果,則,;
(4)如果,則,;
2、判斷:正確的打“√”錯的打“×”
(1)();
(2)()。
3、(1)倒數(shù)等于它本身的數(shù)是______________。
。2)互為相反數(shù)的數(shù)(0除外)商是________________。
教法說明
必做題為本節(jié)的重點內(nèi)容,首先在這節(jié)課學(xué)習(xí)的基礎(chǔ)上讓同學(xué)仿照例題編題,學(xué)生也有這方面的能力,極大調(diào)動了學(xué)生積極性,提高了學(xué)生運用知識的能力。
選作題是對這節(jié)課重點內(nèi)容的進一步理解和運用,為學(xué)有余力的學(xué)生提供了展示自己的機會。
七年級數(shù)學(xué)下冊教案14
知識與技能:
1、了解一元一次不等式組的概念、
2、理解一元一次不等式組的解集,能求一元一次不等式組的解集、
3、會解一元一次不等式組、
過程與方法:
通過具體問題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個不等式,利用數(shù)軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過解幾個有代表性的一元一次不等式組,總結(jié)出求不等式組解集的法則、
情感態(tài)度:
運用數(shù)軸確定不等式組的解集是行之有效的方法、這種“數(shù)形結(jié)合”的方法今后經(jīng)常用到,鍛煉同學(xué)們數(shù)形結(jié)合的能力,提高學(xué)習(xí)興趣、
教學(xué)重點:
一元一次不等式組的解法、
教學(xué)難點:
確定一元一次不等式組的解集、
一、情境導(dǎo)入,初步認識
問題1:
現(xiàn)有兩根木條a和b,a長10cm,b長3cm,如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么木條c的長度有什么要求?
解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設(shè)c的長為xcm,則x<____,①
x>____,②
合起來,組成一個__________
由①解得_____________
由②解得_____________
在數(shù)軸上表示就是________________
容易看出:x的取值范圍是____________________
這就是說,當(dāng)木條c比____cm長并且比____cm短時,它能與木條a和b一起釘成三角形木框、
問題2:
由上面的解不等式組的過程用自己的'語言歸納出一元一次不等式組的解法
教學(xué)說明:全班同學(xué)可獨立作業(yè),也可分組自由討論,10分鐘后交流成果,逐步得出結(jié)論
二、思考探究,獲取新知
思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?
歸納結(jié)論
1、定義:
(1)一元一次不等式組:幾個含有相同未知數(shù)的一元一次不等式合起來組成一個一元一次不等式組、(2)一元一次不等式組的解集:幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集、(3)解不等式組:求一元一次不等式組的解集的過程叫解一元一次不等式組、
2、一元一次不等式組的解法:
(1)求出每個一元一次不等式的解集、
(2)求出這些解集的公共部分,便得到一元一次不等式組的解集
七年級數(shù)學(xué)下冊教案15
一、整式
※1.單項式
、儆蓴(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。
②單項式的系數(shù)是這個單項式的數(shù)字因數(shù),作為單項式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項式只是字母的積,并非沒有系數(shù)。
、垡粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
※2.多項式
①幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中,不含字母的項叫做常數(shù)項。一個多項式中,次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。
、趩雾検胶投囗検蕉加写螖(shù),含有字母的單項式有系數(shù),多項式?jīng)]有系數(shù)。多項式的每一項都是單項式,一個多項式的項數(shù)就是這個多項式作為加數(shù)的單項式的個數(shù)。多項式中每一項都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項式的'次數(shù),一個多項式的次數(shù)只有一個,它是所含各項的次數(shù)中最高的那一項次數(shù)。
※3.整式單項式和多項式統(tǒng)稱為整式。
二、整式的加減
1、整式的加減實質(zhì)上就是去括號后,合并同類項,運算結(jié)果是一個多項式或是單項式。
2、括號前面是“-”號,去括號時,括號內(nèi)各項要變號,一個數(shù)與多項式相乘時,這個數(shù)與括號內(nèi)各項都要相乘。
三、同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運算中最基本的法則,在應(yīng)用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;
、谥笖(shù)是1時,不要誤以為沒有指數(shù);
、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
、墚(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為(其中m、n、p均為正數(shù));
⑤公式還可以逆用:(m、n均為正整數(shù))
四、冪的乘方與積的乘方
※1.冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
※2.。
※3.底數(shù)有負號時,運算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3
※4.底數(shù)有時形式不同,但可以化成相同。
※5.要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。
※7.冪的乘方與積乘方法則均可逆向運用。
五、同底數(shù)冪的除法
※1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。
※2.在應(yīng)用時需要注意以下幾點:
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無意義。
、廴魏尾坏扔0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的;
【七年級數(shù)學(xué)下冊教案】相關(guān)文章:
七年級數(shù)學(xué)下冊教案04-23
七年級數(shù)學(xué)下冊教案01-01
數(shù)學(xué)下冊教案03-16
七年級下冊數(shù)學(xué)教案12-05