【精品】初中數(shù)學(xué)教案15篇
作為一名教學(xué)工作者,總不可避免地需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。那要怎么寫好教案呢?下面是小編幫大家整理的初中數(shù)學(xué)教案,希望能夠幫助到大家。
初中數(shù)學(xué)教案1
《正方形》教學(xué)設(shè)計
教學(xué)內(nèi)容分析:
、艑W(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
、菍Ρ竟(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識,進(jìn)一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
、艑W(xué)生在小學(xué)初步認(rèn)識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。
、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進(jìn)行簡單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學(xué)生的推理能力。
⑶情感態(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質(zhì)與判定,并進(jìn)行簡單的推理。
難點:探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類比與探究
教具準(zhǔn)備:可以活動的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》九年級上冊(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識的前后聯(lián)系
《中心對稱圖形》是新人教版九年級數(shù)學(xué)上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學(xué)生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學(xué)內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學(xué)生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對中心對稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學(xué)九年級一班,作為九年級的學(xué)生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學(xué)生具有個性活潑,思維活躍,對各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動,學(xué)習(xí)積極性高的特點,但學(xué)生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點和認(rèn)知特點
班級學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗,感受學(xué)習(xí)思考的樂趣。
教學(xué)過程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動】
學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。
【教師活動】
評析學(xué)生的結(jié)果,給予表揚。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學(xué)生活動】
學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學(xué)生活動】認(rèn)真觀察變化過程,思考之間的`聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學(xué)生活動】
小組討論,舉手搶答。
【教師活動】
表揚學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學(xué)生活動
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動
小組充分交流,表達(dá)不同的意見。
教師活動
評析活動,總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動
獨立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點、難點
重點:等腰梯形性質(zhì)的探索;
難點:梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:啟發(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
(三)質(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數(shù)學(xué)教案2
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的`數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習(xí)
1、教科書第3頁練習(xí)1、2。
2、補充練習(xí):檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)。教科書第3頁,習(xí)題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學(xué)目的
通過天平實驗,讓學(xué)生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學(xué)過程
一、引入
上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。
二、新授
讓我們先做個實驗,拿出預(yù)先準(zhǔn)備好的天平和若干砝碼。
測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當(dāng)天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。
如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。
初中數(shù)學(xué)教案3
單元要點分析
教材內(nèi)容
1.本單元教學(xué)的主要內(nèi)容。
一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題。
2.本單元在教材中的地位與作用。
一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法。學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,是學(xué)好高中數(shù)學(xué)的奠基工程。應(yīng)該說,一元二次方程是本書的重點內(nèi)容。
教學(xué)目標(biāo)
1.知識與技能
了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實際問題建立一元二次方程的數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識解決問題。
2.過程與方法
(1)通過豐富的實例,讓學(xué)生合作探討,老師點評分析,建立數(shù)學(xué)模型。根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念。
(2)結(jié)合八冊上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項等。
(3)通過掌握缺一次項的一元二次方程的解法──直接開方法,導(dǎo)入用配方法解一元二次方程,又通過大量的`練習(xí)鞏固配方法解一元二次方程。
(4)通過用已學(xué)的配方法解ax2+bx+c=0(a0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac0,b2-4ac=0,b2-4ac0.
(5)通過復(fù)習(xí)八年級上冊《整式》的第5節(jié)因式分解進(jìn)行知識遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它。
(6)提出問題、分析問題,建立一元二次方程的數(shù)學(xué)模型,并用該模型解決實際問題。
初中數(shù)學(xué)教案4
教學(xué)目標(biāo):
1、知識與技能:(1)通過學(xué)生熟悉的問題情景,以過探索有理數(shù)減法法則得出的過程,理解有理數(shù)減法法則的合理性。
(2)能熟練進(jìn)行有理數(shù)的減法法則。
2、過程與方法
通過實例,歸納出有理數(shù)的減法法則,培養(yǎng)學(xué)生的邏輯思維能力和運算能力,通過減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會人歸的數(shù)學(xué)思想。
重點、難點
1、重點:有理數(shù)減法法則及其應(yīng)用。
2、難點:有理數(shù)減法法則的應(yīng)用符號的改變。
教學(xué)過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新課
1、有理數(shù)加法運算是怎樣做的'?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?
導(dǎo)語:可見,有理數(shù)的減法運算在現(xiàn)實生活中也有著很廣泛的應(yīng)用。(出示課題)
二、合作交流,解讀探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?
3、通過以上列式,你能發(fā)現(xiàn)減法運算與加法運算的關(guān)系嗎?
(學(xué)生分組討論,大膽發(fā)言,總結(jié)有理數(shù)的減法法則)
減去一個數(shù)等于加上這個數(shù)的相反數(shù)
教師提問、啟發(fā):(1)法則中的“減去一個數(shù)”,這個數(shù)指的是哪個數(shù)?“減去”兩字怎樣理解?(2)法則中的“加上這個數(shù)的相反數(shù)”“加上”兩字怎樣理解?“這個數(shù)的相反數(shù)”又怎樣理解?(3)你能用字母表示有理數(shù)減法法則嗎?
三、應(yīng)用遷移,鞏固提高
1、P.24例1 計算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、課內(nèi)練習(xí):P.241、2、3
3、游戲:兩人一組,用撲克牌做有理數(shù)減法運算游戲(每人27張牌,黑牌點數(shù)為正數(shù),紅牌點數(shù)為負(fù)數(shù),王牌點數(shù)為0。每人每次出一張牌,兩人輪流先出(先出者為被減數(shù)),先求出這兩張牌點數(shù)之差者獲勝,直至其中一人手中無牌為止)。
四、總結(jié)反思
(1) 有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
(2) 有理數(shù)減法的步驟:先變?yōu)榧臃ǎ俑淖儨p數(shù)的符號,最后按有理數(shù)加法法則計算。
五、作業(yè)
P.27習(xí)題1.4A組1、2、5、6
備選題
填空:比2小-9的數(shù)是 。
а比а+2小 。
若а小于0,е是非負(fù)數(shù),則2а-3е 0。
初中數(shù)學(xué)教案5
(一)教材分析
1、知識結(jié)構(gòu)
2、重點、難點分析
重點:
找出命題的題設(shè)和結(jié)論.因為找出一個命題的題設(shè)和結(jié)論,是對該命題深刻理解的前提,而對命題理解能力是我們今后研究數(shù)學(xué)必備的能力,也是研究其它學(xué)科能力的基礎(chǔ).
難點:
找出一個命題的題設(shè)和結(jié)論.因為理解和掌握一個命題,一定要分清它的題設(shè)和結(jié)論,所以找出一個命題的題設(shè)和結(jié)論是十分重要的問題.但有些命題的題設(shè)和結(jié)論不明顯.例如,“對頂角相等”,“等角的余角相等”等.一些沒有寫成“如果那么”形式的命題,學(xué)生往往搞不清哪是題設(shè),哪是結(jié)論,又沒有一個通用的方法可以套用,所以分清題設(shè)和結(jié)論是教學(xué)的一個難點.
。ǘ┙虒W(xué)建議
1、教師在教學(xué)過程中,組織或引導(dǎo)學(xué)生從具體到抽象,結(jié)合學(xué)生熟悉的事例,來理解命題的概念、找出一個命題的題設(shè)和結(jié)論,并能判斷一些簡單命題的真假.
2、命題是數(shù)學(xué)中一個非常重要的概念,雖然高中階段我們還要學(xué)習(xí),但對于程度好的A層學(xué)生還要理解:
。1)假命題可分為兩類情況:
、兕}設(shè)只有一種情形,并且結(jié)論是錯誤的,例如,“1+3=7”就是一個錯誤的命題.
②題設(shè)有多種情形,其中至少有一種情形的結(jié)論是錯誤的.
例如,“內(nèi)錯角互補,兩直線平行”這個命題的題設(shè)可分為兩種情形:
第一種情形是兩個內(nèi)錯角都等于90°,這時兩直線平行;
第二種情形是兩個內(nèi)錯角不都等于90°,這時兩直線不平行.
整體說來,這是錯誤的命題.
(2)是否是命題:
命題的'定義包括兩層涵義:
、倜}必須是一個完整的句子;
②這個句子必須對某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語法上,這樣的句子叫做陳述句,它由“題設(shè)+結(jié)論”構(gòu)成.
另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點作該直線的平行線.”疑問句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結(jié)果!”以上三個句子都不是命題.
。3)命題的組成
每個命題都是由題設(shè)、結(jié)論兩部分組成.題設(shè)是已知事項;結(jié)論是由已知事項推出的事項.命題常寫成“如果,那么”的形式.具有這種形式的命題中,用“如果”開始的部分是題設(shè),用“那么”開始的部分是結(jié)論.
有些命題,沒有寫成“如果,那么”的形式,題設(shè)和結(jié)論不明顯.對于這樣的命題,要經(jīng)過分折才能找出題設(shè)和結(jié)論,也可以將它們改寫成“如果那么”的形式.
另外命題的題設(shè)(條件)部分,有時也可用“已知”或者“若”等形式表述;命題的結(jié)論部分,有時也可用“求證”或“則”等形式表述.
初中數(shù)學(xué)教案6
教學(xué)目標(biāo):
1.在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角.
2.理解對頂角相等,并能運用它解決一些問題.
重點:
鄰補角、對頂角的概念,對頂角的性質(zhì)與應(yīng)用.
難點:
理解對頂角相等的性質(zhì)的探索.
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
引導(dǎo)語:
我們生活的世界中,蘊涵著大量的相交線和平行線.
本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì),研究平行線的性質(zhì)和平行線的判定以及圖形的平移問題.
二、嘗試活動,探索新知
教師出示一塊布片和一把剪刀,表演剪刀剪布的過程.
教師提出問題:剪布時,用力握緊把手,發(fā)生了什么變化?進(jìn)而使什么也發(fā)生了變化?
學(xué)生觀察、思考、回答,得出:
握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刀刃之間的角相應(yīng)變。绻淖冇昧Ψ较,隨著兩個把手之間的角逐漸變大,剪刀刀刃之間的角也相應(yīng)變大.
教師提問:我們可以把剪刀抽象成什么簡單的圖形?
學(xué)生回答:畫成兩條相交的直線,學(xué)生畫直線AB、CD相交于點O,并說出圖中4個角.
教師提問:兩兩相配共能組成幾對角?各對角的位置關(guān)系如何?根據(jù)不同的位置怎么將它們分類?
學(xué)生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各對角的.度數(shù)有什么關(guān)系?(學(xué)生得出結(jié)論:相鄰的兩個角互補,對頂?shù)膬蓚角相等)
學(xué)生根據(jù)觀察和度量完成下表:
兩條直線相交、所形成的角、分類、位置關(guān)系、數(shù)量關(guān)系
教師提問:
如果改變∠AOC的大小,會改變它與其他角的位置關(guān)系和數(shù)量關(guān)系嗎?
學(xué)生思考回答:
只會改變數(shù)量關(guān)系而不會改變位置關(guān)系.
師生共同定義鄰補角、對頂角:
有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.
如果兩個角有一個公共頂點,而且一個角的兩邊分別是另一個角的兩邊的反向延長線,那么這兩個角叫做對頂角.
教師提問:
你同意下列說法嗎?如果錯誤,如何訂正?
1.鄰補角的“鄰”就是“相鄰”,就是它們有一條“公共邊”,“補”就是“互補”,就是這兩個角的另一條邊在同一條直線上.
2.鄰補角可看成是平角被過它的頂點的一條射線分成的兩個角.
3.鄰補角是互補的兩個角,互補的兩個角也是鄰補角.
學(xué)生思考回答:1、2是對的,3是錯的.
第3個應(yīng)改成:鄰補角是互補的兩個角,互補的兩個角不一定是鄰補角.
教師讓學(xué)生說一說在學(xué)習(xí)對頂角的概念后,通過實際操作獲得的直觀體驗.
教師把說理過程規(guī)范地板書:
在右圖中,∠AOC的鄰補角是∠BOC和∠AOD,所以∠AOC與∠BOC互補,∠AOC與∠AOD互補,根據(jù)“同角的補角相等”,可以得出∠AOD=∠BOC,類似地有∠AOC=∠BOD.
教師板書對頂角的性質(zhì):
對頂角相等.
強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:
對頂角的概念是確定兩角的位置關(guān)系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關(guān)系.
三、例題講解
【例】 如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).
【答案】 由鄰補角的定義,得∠2=180°-∠1=180°-40°=140°;由對頂角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、鞏固練習(xí)
1.判斷下列圖中是否存在對頂角.
2.按要求完成下列各題.
(1)兩條直線相交,構(gòu)成哪兩種特殊位置關(guān)系的角?指出下圖中具有這兩種位置關(guān)系的角.
eq o(sup7(,圖(1)) ,圖(2))
(2)如圖,若∠AOD= 90°,那么直線AB與CD的位置關(guān)系如何?
【答案】
1.都不存在對頂角.
2.(1)對頂角,鄰補角.
對頂角:∠AOC和∠BOD,∠AOD和∠BOC.
鄰補角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、課堂小結(jié)
教師引導(dǎo)學(xué)生進(jìn)行本節(jié)課的小結(jié)并強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:對頂角的概念是確定兩角的位置關(guān)系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關(guān)系.
教學(xué)反思
通過本節(jié)課的學(xué)習(xí),大部分學(xué)生能積極主動地參與到學(xué)習(xí)活動中來,并能積極主動地提出各類問題并解決問題,達(dá)到了基本的教學(xué)效果.但是由于對新概念的理解不是很深刻,所以在應(yīng)用方面存在不足,針對這一情況,教師應(yīng)選擇典型的例題,詳細(xì)講解,指導(dǎo)學(xué)生探求解題的思路和方法,加深對概念的理解,做到熟練的應(yīng)用。
初中數(shù)學(xué)教案7
教學(xué)內(nèi)容:在學(xué)生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關(guān)系。
教學(xué)目標(biāo):1、通過對"撲克"有趣的研究,培養(yǎng)起學(xué)生對生活中平常小事的.關(guān)注。
2、調(diào)動學(xué)生豐富的聯(lián)想,養(yǎng)成一種思考的習(xí)慣。
教學(xué)重難點:"撲克"與年月日、季度的聯(lián)系。
教學(xué)過程:
一、談話引入
師:同學(xué)們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?
生:......
(教師補充,引發(fā)學(xué)生的好奇心。)
師: "撲克"還有一種作用,而且與數(shù)學(xué)有關(guān)!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數(shù)
所有牌的和+小王+大王=閏年的天數(shù)
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的和=一個季度的天數(shù)
一種花色有13張牌=一個季度有13個星期
三、小結(jié)
生活中有很多的數(shù)學(xué),他每時每刻都在我們的身邊出現(xiàn),只是我們大家沒有注意到。請大家都要學(xué)會留心觀察,做生活的有心人。
初中數(shù)學(xué)教案8
教學(xué)目標(biāo):
1.會用待定系數(shù)法求反比例函數(shù)的解析式.
2.通過實例進(jìn)一步加深對反比例函數(shù)的認(rèn)識,能結(jié)合具體情境,體會反比例函數(shù)的意義,理解比例系數(shù)的具體的意義.
3.會通過已知自變量的值求相應(yīng)的反比例函數(shù)的值.運用已知反比例函數(shù)的值求相應(yīng)自變量的值解決一些簡單的問題.
重點:用待定系數(shù)法求反比例函數(shù)的解析式.
難點:例3要用科學(xué)知識,又要用不等式的知識,學(xué)生不易理解.
教學(xué)過程:
一.復(fù)習(xí)
1、反比例函數(shù)的定義:
判斷下列說法是否正確(對‖√‖,錯‖3‖)
(1)一矩形的面積為20cm2,相鄰的兩條邊長分別為x(cm)和y(cm),變量y是變量x的反比例函數(shù).(2)圓的面積公式s??r2中,s與r成正比例.(3)矩形的長為a,寬為b,周長為C,當(dāng)C為常量時,a是b的反比例函數(shù).方形的邊長為x,高為y,當(dāng)其體積V為常量時,y是x的反比例函數(shù).(4)一個正四棱柱的底面正
定時,商和除數(shù)成反比例.(5)當(dāng)被除數(shù)(不為零)一
(6)計劃修建鐵路1200km,則鋪軌天數(shù)y(d)是每日鋪軌量x(km/d)的反比例函數(shù).
2、思考:如何確定反比例函數(shù)的解析式?
(1)已知y是x的反比例函數(shù),比例系數(shù)是3,則函數(shù)解析式是_______
(2)當(dāng)m為何值時,函數(shù)4是反比例函數(shù),并求出其函數(shù)解析式.y?2m?2關(guān)鍵是確定比例系數(shù)!x
二.新課
1.例2:已知變量y與x成反比例,且當(dāng)x=2時y=9,寫出y與x之間的函數(shù)解析式和自變量的'取值范圍。小結(jié):要確定一個反比例函數(shù)y?k的解析式,只需求出比例系數(shù)k。如果已知一對自變量與函數(shù)的對應(yīng)值,x
3時,y=2,求這個函數(shù)的解析式和自變量的取值范圍。4就可以先求出比例系數(shù),然后寫出所要求的反比例函數(shù)。2.練習(xí):已知y是關(guān)于x的反比例函數(shù),當(dāng)x=?
3.說一說它們的求法:
(1)已知變量y與x-5成反比例,且當(dāng)x=2時y=9,寫出y與x之間的函數(shù)解析式.
(2)已知變量y-1與x成反比例,且當(dāng)x=2時y=9,寫出y與x之間的函數(shù)解析式.
4.例3、設(shè)汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過電流的強度為I(A)。
。1)已知一個汽車前燈的電阻為30Ω,通過的電流為0.40A,求I關(guān)于R的函數(shù)解析式,并說明比例系數(shù)的實際意義。
(2)如果接上新燈泡的電阻大于30Ω,那么與原來的相比,汽車前燈的亮度將發(fā)生什么變化?
在例3的教學(xué)中可作如下啟發(fā):
(1)電流、電阻、電壓之間有何關(guān)系?
。2)在電壓U保持不變的前提下,電流強度I與電阻R成哪種函數(shù)關(guān)系?
。3)前燈的亮度取決于哪個變量的大。咳绾螞Q定?
先讓學(xué)生嘗試練習(xí),后師生一起點評。
三.鞏固練習(xí):
1.當(dāng)質(zhì)量一定時,二氧化碳的體積V與密度p成反比例。且V=5m3時,p=1.98kg/m3
。1)求p與V的函數(shù)關(guān)系式,并指出自變量的取值范圍。
。2)求V=9m3時,二氧化碳的密度。
四.拓展:
1.已知y與z成正比例,z與x成反比例,當(dāng)x=-4時,z=3,y=-4.求:
(1)Y關(guān)于x的函數(shù)解析式;
(2)當(dāng)z=-1時,x,y的值.
2.已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時,y的
值都等于10,求y與x之間的函數(shù)關(guān)系。
五.交流反思
求反比例函數(shù)的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數(shù)關(guān)系,如例2;另一種是變量之間的關(guān)系由已學(xué)的數(shù)量關(guān)系直接給出,如例3中的I?
六、布置作業(yè):P4B組
教學(xué)后記:
U由歐姆定律得到。R
初中數(shù)學(xué)教案9
教學(xué)目標(biāo)
1.知識與技能
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.
2.過程與方法
經(jīng)歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.
3.情感態(tài)度與價值觀
培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度.
重、難點與關(guān)鍵
1.重點:去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡.
2.難點:括號前面是“-”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤.
3.關(guān)鍵:準(zhǔn)確理解去括號法則.
教具準(zhǔn)備
投影儀.
教學(xué)過程
一、新授
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號,它們應(yīng)如何化簡?
思路點撥:教師引導(dǎo),啟發(fā)學(xué)生類比數(shù)的運算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡帶有括號的整式,首先應(yīng)先去括號.
上面兩式去括號部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號時符號變化的規(guī)律嗎?
思路點撥:鼓勵學(xué)生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;
如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號去掉,得:
+(x-3)=x-3(括號沒了,括號內(nèi)的每一項都沒有變號)
-(x-3)=-x+3(括號沒了,括號內(nèi)的每一項都改變了符號)
去括號規(guī)律要準(zhǔn)確理解,去括號應(yīng)對括號的每一項的.符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內(nèi)原有幾項去掉括號后仍有幾項.
二、范例學(xué)習(xí)
例1.化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點撥:講解時,先讓學(xué)生判定是哪種類型的去括號,去括號后,要不要變號,括號內(nèi)的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內(nèi),然后再去括號.
解答過程按課本,可由學(xué)生口述,教師板書.
例2.兩船從同一港口同時出發(fā)反向而行,甲船順?biāo),乙船逆水?兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.
(1)2小時后兩船相距多遠(yuǎn)?
(2)2小時后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.
思路點撥:根據(jù)船順?biāo)叫械乃俣?船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號時強調(diào):括號內(nèi)每一項都要乘以2,括號前是負(fù)因數(shù)時,去掉括號后,括號內(nèi)每一項都要變號.為了防止出錯,可以先用分配律將數(shù)字2與括號內(nèi)的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.
三、鞏固練習(xí)
1.課本第68頁練習(xí)1、2題.
2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點撥:一般地,先去小括號,再去中括號.
四、課堂小結(jié)
去括號是代數(shù)式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規(guī)律可以簡單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號前帶有數(shù)字因數(shù)時,這個數(shù)字要乘以括號內(nèi)的每一項,切勿漏乘某些項.
五、作業(yè)布置
1.課本第71頁習(xí)題2.2第2、3、5、8題.
2.選用課時作業(yè)設(shè)計.
初中數(shù)學(xué)教案10
一、 教學(xué)目標(biāo)
1、 知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運算。
2、 能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進(jìn)行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
(1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的`方向為負(fù)方向。
、 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
、 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
(2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
②積的絕對值等于 。
③任何數(shù)與零相乘,積仍為 。
。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做練習(xí),教師評析。
(4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
初中數(shù)學(xué)教案11
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點和難點
重點:
(1)二次根的意義;
。2)二次根式中字母的取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的.限制也是根式的一部分。
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略。
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
。3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學(xué)教案12
教學(xué)目的
1、使學(xué)生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準(zhǔn)確判斷一個數(shù)是有理數(shù)還是無理數(shù)。
2、使學(xué)生能了解實數(shù)絕對值的意義。
3、使學(xué)生能了解數(shù)軸上的點具有一一對應(yīng)關(guān)系。
4、由實數(shù)的分類,滲透數(shù)學(xué)分類的思想。
5、由實數(shù)與數(shù)軸的一一對應(yīng),滲透數(shù)形結(jié)合的思想。
教學(xué)分析
重點:無理數(shù)及實數(shù)的'概念。
難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應(yīng)。
教學(xué)過程
一、復(fù)習(xí)
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類?
。ò炊x分與按大小分。)
二、新授
1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。
判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。
2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。
3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。
除了按定義還能按大小寫出列表。
4、實數(shù)的相反數(shù):
5、實數(shù)的絕對值:
6、實數(shù)的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
。1)任何實數(shù)的偶次冪是正實數(shù)。( )
。2)在實數(shù)范圍內(nèi),若| x|=|y|則x=y。( )
。3)0是最小的實數(shù)。( )
。4)0是絕對值最小的實數(shù)。( )
解:略
三、練習(xí)
P148 練習(xí):3、4、5、6。
四、小結(jié)
1、今天我們學(xué)習(xí)了實數(shù),請同學(xué)們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關(guān)系,二是對實數(shù)兩種不同的分類要清楚。
2、要對應(yīng)有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質(zhì),來理解在實數(shù)中的運用。
五、作業(yè)
1、P150 習(xí)題A:3。
2、基礎(chǔ)訓(xùn)練:同步練習(xí)1。
初中數(shù)學(xué)教案13
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點:
使學(xué)生會用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用問題
(二)能力訓(xùn)練點:
進(jìn)一步培養(yǎng)學(xué)生化實際問題為數(shù)學(xué)問題的能力和分析問題解決問題的能力,培養(yǎng)用數(shù)學(xué)的意識
二、教學(xué)重點、難點
1.教學(xué)重點:
會用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用題
2.教學(xué)難點:
找等量關(guān)系列一元二次方程解應(yīng)用題時,應(yīng)注意是方程的解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的`解.例如線段的長度不為負(fù)值,人的個數(shù)不能為分?jǐn)?shù)等
三、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
(二)整體感知
。ㄈ┲攸c、難點的學(xué)習(xí)和目標(biāo)完成過程
1.復(fù)習(xí)提問
。1)列方程解應(yīng)用題的步驟?
。2)長方形的周長、面積?長方體的體積?
2.例1?現(xiàn)有長方形紙片一張,長19cm,寬15cm,需要剪去邊長是多少的小正方形才能做成底面積為77cm2的無蓋長方體型的紙盒?
解:設(shè)需要剪去的小正方形邊長為xcm,則盒底面長方形的長為(19—2x)cm,寬為(15—2x)cm,
據(jù)題意:(19—2x)(15—2x)=77
整理后,得x2—17x+52=0,
解得x1=4,x2=13
∴當(dāng)x=13時,15—2x=—11(不合題意,舍去)
答:截取的小正方形邊長應(yīng)為4cm,可制成符合要求的無蓋盒子
練習(xí)1章節(jié)前引例.
學(xué)生筆答、板書、評價
練習(xí)2教材P。42中4
學(xué)生筆答、板書、評價
注意:全面積=各部分面積之和
剩余面積=原面積—截取面積
例2要做一個容積為750cm3,高是6cm,底面的長比寬多5cm的長方形匣子,底面的長及寬應(yīng)該各是多少(精確到0。1cm)?
分析:底面的長和寬均可用含未知數(shù)的代數(shù)式表示,則長×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程
解:長方體底面的寬為xcm,則長為(x+5)cm,
解:長方體底面的寬為xcm,則長為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x—125=0
解這個方程x1=9。0,x2=—14。0(不合題意,舍去)
當(dāng)x=9。0時,x+17=26。0,x+12=21。0.
答:可以選用寬為21cm,長為26cm的長方形鐵皮
教師引導(dǎo),學(xué)生板書,筆答,評價
。ㄋ模┛偨Y(jié)、擴展
1.有關(guān)面積和體積的應(yīng)用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長不能為負(fù)
3.進(jìn)一步體會數(shù)字在實踐中的應(yīng)用,培養(yǎng)學(xué)生分析問題、解決問題的能力
四、布置作業(yè)
教材P42中A3、6、7
教材P41中3、4
五、板書設(shè)計
初中數(shù)學(xué)教案14
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>
2。當(dāng)x
>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的'定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學(xué)教案15
教學(xué)目標(biāo)
。1)認(rèn)知目標(biāo)
理解并掌握分式的乘除法法則,能進(jìn)行簡單的分式乘除法運算,能解決一些與分式乘除有關(guān)的實際問題。
。2)技能目標(biāo)
經(jīng)歷從分?jǐn)?shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認(rèn)識。
。3)情感態(tài)度與價值觀
教學(xué)中讓學(xué)生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識的同時感受探索的樂趣和成功的體驗。
教學(xué)重難點
重點:運用分式的乘除法法則進(jìn)行運算。
難點:分子、分母為多項式的分式乘除運算。
教學(xué)過程
。ㄒ唬┨岢鰡栴},引入課題
俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:
問題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。
問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。
從實際出發(fā),引出分式的乘除的實在存在意義,讓學(xué)生感知學(xué)習(xí)分式的乘法和除法的實際需要,從而激發(fā)學(xué)生興趣和求知欲。
(二)類比聯(lián)想,探究新知
從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。
解后總結(jié)概括:
。1)式是什么運算?依據(jù)是什么?
。2)式又是什么運算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。
。ǚ质降某顺ǚ▌t)
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
。ㄈ├}分析,應(yīng)用新知
師生活動:教師參與并指導(dǎo),學(xué)生獨立思考,并嘗試完成例題。
P11的例1,在例題分析過程中,為了突出重點,應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的'難點我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯易漏的環(huán)節(jié),學(xué)會解題的方法。
。ㄋ模┚毩(xí)鞏固,培養(yǎng)能力
P13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。
師生活動:教師出示問題,學(xué)生獨立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過程。
通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達(dá)到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。
。ㄎ澹┱n堂小結(jié),回扣目標(biāo)
引導(dǎo)學(xué)生自主進(jìn)行課堂小結(jié):
1、本節(jié)課我們學(xué)習(xí)了哪些知識?
2、在知識應(yīng)用過程中需要注意什么?
3、你有什么收獲呢?
師生活動:學(xué)生反思,提出疑問,集體交流。
(六)布置作業(yè)
教科書習(xí)題6.2第1、2(必做)練習(xí)冊P(選做),我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。
板書設(shè)計
在本節(jié)課中我將采用提綱式的板書設(shè)計,因為提綱式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內(nèi)容和知識體系的理解和記憶。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案11-15
初中數(shù)學(xué)教案08-12
【精】初中數(shù)學(xué)教案01-12
初中數(shù)學(xué)教案【熱門】01-12
初中數(shù)學(xué)教案【推薦】01-12
初中數(shù)學(xué)教案【薦】01-12
【推薦】初中數(shù)學(xué)教案01-26
初中數(shù)學(xué)教案模板09-29
初中數(shù)學(xué)教案精品01-13