丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網>教案大全>數(shù)學教案>初中數(shù)學教案

初中數(shù)學教案

時間:2022-08-12 10:31:41 數(shù)學教案 我要投稿

初中數(shù)學教案

  作為一名無私奉獻的老師,總不可避免地需要編寫教案,教案是教學藍圖,可以有效提高教學效率。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的初中數(shù)學教案,僅供參考,希望能夠幫助到大家。

初中數(shù)學教案

初中數(shù)學教案1

  一、教學目標:

  1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

  2、能力目標:

 、,在實踐操作過程中,逐步探索圖形之間的平移關系;

 、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

  3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

  二、重點與難點:

  重點:圖形連續(xù)變化的特點;

  難點:圖形的劃分。

  三、教學方法:

  講練結合。使用多媒體課件輔助教學。

  四、教具準備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學設計:

  創(chuàng)設情景,探究新知:

  (演示課件):教材上小狗的圖案。提問:

  (1)這個圖案有什么特點?

  (2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

  (3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學生充分討論,歸納總結,老師給予適當?shù)闹笇,并對每種答案都要肯定。

  看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

  小組討論,派代表到臺上給大家講解。

  氣氛要熱烈,充分調動學生的積極性,發(fā)掘他們的想象力。

  暢所欲言,互相補充。

  課堂小結:

  在教師的引導下學生總結本節(jié)課的`主要內容,并啟發(fā)學生在我們周圍尋找平移的例子。

  課堂練習:

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對于每種答案,教師都要給予充分的肯定。

  六、教學反思:

  本節(jié)的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質的提高。

初中數(shù)學教案2

  一、 教學目標

  1、 知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標

  經歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  二、 教學重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  三、 教學過程

  1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?學生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

 、 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  -2 ×3=

 、 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

 。-2) ×(-3)=

 。2)學生歸納法則

 、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?

  (+)×(+)=( ) 同號得

 。-)×(+)=( ) 異號得

  (+)×(-)=( ) 異號得

 。-)×(-)=( ) 同號得

 、诜e的絕對值等于 。

 、廴魏螖(shù)與零相乘,積仍為 。

 。3)師生共同用文字敘述有理數(shù)乘法法則。

  3、 運用法則計算,鞏固法則。

  (1)教師按課本P75 例1板書,要求學生述說每一步理由。

 。2)引導學生觀察、分析例子中兩因數(shù)的`關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

 。3)學生做練習,教師評析。

  (4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數(shù)相乘的符號法則。

初中數(shù)學教案3

  教學內容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關系。

  教學目標:1、通過對"撲克"有趣的研究,培養(yǎng)起學生對生活中平常小事的關注。

  2、調動學生豐富的聯(lián)想,養(yǎng)成一種思考的習慣。

  教學重難點:"撲克"與年月日、季度的聯(lián)系。

  教學過程:

  一、談話引入

  師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?

  生:......

 。ń處熝a充,引發(fā)學生的好奇心。)

  師: "撲克"還有一種作用,而且與數(shù)學有關!

  生:......

  二、新課

  1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬

  2、大王=太陽 小王=月亮 紅=白天 黑=夜晚

  3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1

  4、所有牌的和+小王=平年的天數(shù)

  所有牌的和+小王+大王=閏年的.天數(shù)

  5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月

  6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。

  7、一種花色的和=一個季度的天數(shù)

  一種花色有13張牌=一個季度有13個星期

  三、小結

  生活中有很多的數(shù)學,他每時每刻都在我們的身邊出現(xiàn),只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。

初中數(shù)學教案4

  一、課題

  27.3 過三點的圓

  二、教學目標

  1.經歷過一點、兩點和不在同一直線上的三點作圓的過程.

  2.. 知道過不在同一條直線上的三個點畫圓的方法

  3.了解三角形的外接圓和外心.

  三、教學重點和難點

  重點:經歷過一點、兩點和不在同一直線上的三點作圓的過程.

  難點:知道過不在同一條直線上的三個點畫圓的方法.

  四、教學手段

  現(xiàn)代課堂教學手段

  五、教學方法

  學生自己探索

  六、教學過程設計

  (一)、新授

  1.過已知一個點A畫圓,并考慮這樣的圓有多少個?

  2.過已知兩個點A、B畫圓,并考慮這樣的.圓有多少個?

  3.過已知三個點A、B、C畫圓,并考慮這樣的圓有多少個?

  讓學生以小組為單位,進行探索、思考、交流后,小組選派代表向全班學生展示本小組的探索成果,在展示后,接受其他學生的質疑.

  得出結論:過一點可以畫無數(shù)個圓;過兩點也可以畫無數(shù)個圓;這些圓的圓心都在連結這兩點的線段的垂直平分線上;經過不在同一直線上的三個點可以畫一個圓,并且這樣的圓只有一個.

  不在同一直線上的三個點確定一個圓.

  給出三角形外接圓的概念:經過三角形三個頂點可以作一個圓,這個圓叫作三角形的外接圓,外接圓的圓心叫做三角形的外心.

  例:畫已知三角形的外接圓.

  讓學生探索課本第15頁習題1.

  一起探究

  八年級(一)班的學生為老區(qū)的小朋友捐款500元,準備為他們購買甲、乙 兩種圖書共12套.已知甲種圖書每套45元,乙種圖書每套40元.這些錢最多能買甲種圖書多少套?

  分析:帶領學生完成課本第13頁的表格,并完成2、3 問題,使學生清楚通過列表可以更好的分析題目,對于情景較為復雜的問題情景可采用這種分析方法解題.另外通過此題,使學生認識到:在應不等式解決實際問題時,當求出不等式的解集后,還要根據(jù)問題的實際意義確定問題的解.

  (二)、小結

  七、練習設計

  P15習題2、3

  八、教學后記

  后備練習:

  1. 已知一個三角形的三邊長分別是 ,則這個三角形的外接圓面積等于 .

  2. 如圖,有A, ,C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在()

  A.在AC,BC兩邊高線的交點處

  B.在AC,BC兩邊中線的交點處

  C.在AC,BC兩邊垂直平分線的交點處

  D.在A,B兩內角平分線的交點處

初中數(shù)學教案5

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?

  這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

  同學們動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的`方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  這正是我們本章要解決的問題。

  三、鞏固練習

  1、教科書第3頁練習1、2。

  2、補充練習:檢驗下列各括號內的數(shù)是不是它前面方程的解。

 。1)x-3(x+2)=6+x(x=3,x=-4)

 。2)2y(y-1)=3(y=-1,y=2)

 。3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小結。本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業(yè)。教科書第3頁,習題6。1第1、3題。

  解一元一次方程

  1、方程的簡單變形

  教學目的

  通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。

  重點、難點

  1、重點:方程的兩種變形。

  2、難點:由具體實例抽象出方程的兩種變形。

  教學過程

  一、引入

  上一節(jié)課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。

  二、新授

  讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。

  測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質量相等。

  如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。

  如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?

  讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。

初中數(shù)學教案6

  【教學目標】

  1進一步認識方程及其解的概念。

  2理解一元一次方程的概念,會根據(jù)簡單數(shù)量關系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。

  【教學重點】

  一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節(jié)教學的重點。

  【教學難點】

  用嘗試、檢驗的方法解一元一次方程的過程比較復雜,是本節(jié)教學的難點。

  【學習準備】

  1.下面哪些式子是方程?

 。1)3

  (2)1;

 。2)x31;

 。3)3x5;

 。4)2xy4;

  (5)x31;

 。6)3x14.

  2.方程與等式有什么聯(lián)系與區(qū)別?

  方程是解決實際問題的一個重要數(shù)學模型,需要我們進一步學習研究。

  【課本導學】

  思考一閱讀并解答課本第114頁“合作學習”的三個問題,思考:

  1.列方程就是根據(jù)問題中的相等關系,寫出含有未知數(shù)的等式。

 。1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?

 。2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加

  (3)張明投進x個,那么“小杰投進的球的個數(shù)”可以怎樣表示?“3人一共投進的球數(shù)”怎樣表示?

  你是怎么理解“三人平均每人投進14個球”這句話的?

  思考二觀察你所列的方程,這些方程之間有哪些共同的特點?請思考:

  1.你可以從哪些角度對這些方程進行觀察呢?說說你的想法。

  2.具有“合作學習”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的`含義嗎?[練習]完成課本第115頁課內練習

  1.『歸納』判斷一個方程是不是一元一次方程應抓住哪幾個關鍵特點?

  思考三閱讀課本第114頁倒數(shù)3行至第115頁正文結束,并思考下面的問題:

  1.(1)如果一個數(shù)是方程有什么關系?

 。2)如果一個數(shù)是方程350應該是多少?

 。3)要判斷一個數(shù)是不是方程3m?2?1?m的解,你會怎么做?2.對方程2x12

  14的解,這個數(shù)代入方程的左邊計算得到的值與14 3 1

  x500的解,這個數(shù)代入方程的左邊計算得到的值10 2x12

  14進行嘗試求解時,你認為x必須是整數(shù)嗎

  x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。

  [練習]完成課本第115頁課內練習

  2.『歸納』1.檢驗一個數(shù)是不是一元一次方程的解的步驟有哪些?

  2.用嘗試檢驗的方法解一元一次方程,你覺得關鍵的步驟有哪些?【盤點收獲】

  【學習檢測】

  1.下列說法正確的是()

  (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程

  2.下列式子中,屬于一元一次方程的是()(a)5x 1

 。╞)ab8(c)1257(d)5x82x9 3

  3.設某數(shù)為x,根據(jù)下列條件列出求該數(shù)的方程:

 。1)某數(shù)加上1,再乘以2,得6.

  (2)某數(shù)與7的和的2倍等于10.

 。3)某數(shù)的5倍比某數(shù)小3.

  4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?

  設還需租用x輛,則可列出方程44x+64=328.

  (1)寫出一個方程,使它的解是

  2.【作業(yè)布置】略

  【課后反思】

  課堂教學總是在“預設”與“生成”間交融進行,如何根據(jù)學情做好充分的預設,又根據(jù)課堂生成靈活應變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學功底.反芻本課,筆者認為還有以下幾方面值得反思與改進:

  1.忽略課堂“火花”,錯失追問良機

  在交流對方程的共同特征探討的環(huán)節(jié),有一個同學直接說出了“一元一次方程”的名稱.【片斷實錄】

  師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數(shù)的,用x或y來表示.師(板書):嗯,都含有未知數(shù),這個未知數(shù)呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.

  師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學已經預習了呢.我們看,剛才這位同學歸納了:都含有未知數(shù).那么請同學們看得更仔細一點,未知數(shù)在這里具有什么特征呢?

  不難看出,筆者在這里沒有很好地抓住學生的課堂即時生成資源,用一句“嗯,……,這位同學已經預習了呢.”輕輕帶過,仍然拉著學生回到了預設的軌道“……,請同學們看得更仔細一點,未知數(shù)在這里具有什么特征呢?”如果當時直接問她“那么請你講講什

初中數(shù)學教案7

  今天小編為大家精心整理了一篇有關初中數(shù)學教案之公式的相關內容,以供大家閱讀!

  教學設計示例一——公式

  教學目標

  1.了解公式的意義,使學生能用公式解決簡單的實際問題;

  2.初步培養(yǎng)學生觀察、分析及概括的能力;

  3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

  教學建議

  一、教學重點、難點

  重點:通過具體例子了解公式、應用公式.

  難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

  二、重點、難點分析

  人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

  三、知識結構

  本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

  2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

  3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

  教學設計示例二——公式

  一、教學目標

 。ㄒ唬┲R教學點

  1.使學生能利用公式解決簡單的實際問題.

  2.使學生理解公式與代數(shù)式的關系.

  (二)能力訓練點

  1.利用數(shù)學公式解決實際問題的能力.

  2.利用已知的公式推導新公式的能力.

 。ㄈ┑掠凉B透點

  數(shù)學來源于生產實踐,又反過來服務于生產實踐.

  (四)美育滲透點

  數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美.

  二、學法引導

  1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的公式為基礎、突破難點

  2.學生學法:觀察分析推導計算

  三、重點、難點、疑點及解決辦法

  1.重點:利用舊公式推導出新的圖形的計算公式.

  2.難點:同重點.

  3.疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀,自制膠片。

  六、師生互動活動設計

  教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.

  七、教學步驟

  (一)創(chuàng)設情景,復習引入

  師:同學們已經知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏.

  在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題.

  板書:公式

  師:小學里學過哪些面積公式?

  板書:S=ah

 。ǔ鍪就队1)。解釋三角形,梯形面積公式

  【教法說明】讓學生感知用割補法求圖形的面積。

  (二)探索求知,講授新課

  師:下面利用面積公式進行有關計算

 。ǔ鍪就队2)

  例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積S。

  師生共同分析:1.根據(jù)梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?

  2.題中“M”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)

  學生口述解題過程,教師予以指正并指出,強調解題的規(guī)范性.

  【教法說明】1.通過分析,引導學生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量.2.用公式計算時,要先寫出公式,然后代入計算,養(yǎng)成良好的解題習慣.

 。ǔ鍪就队3)

  例2如圖是一個環(huán)形,外圓半徑,內圓半徑求這個環(huán)形的面積

  學生討論:1.環(huán)形是怎樣形成的.2.如何求環(huán)形的面積討論后請學生板演,其他同學做在練習本上,教育巡回指導.

  評講時注意1.如果有學生作了簡便計算,則給予表揚和鼓勵:如果沒有學生這樣計算,則啟發(fā)學生這樣計算.

  2.本題實際上是由圓的面積公式推導出環(huán)形面積公式.

  3.進一步強調解題的規(guī)范性

  教法說明,讓學生做例題,學生能自己評判對與錯,優(yōu)與劣,是獲取知識的一個很好的.途徑.

  測試反饋,鞏固練習

 。ǔ鍪就队4)

  1.計算底,高的三角形面積

  2.已知長方形的長是寬的1.6倍,如果用a表示寬,那么這個長方形的周長是多少?當時,求t

  3.已知圓的半徑,,求圓的周長C和面積S

  4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。

 。1)求A地到B地所用的時間公式。

  (2)若千米/時,千米/時,求從A地到B地所用的時間。

  學生活動:分兩次完成,每次兩題,兩人板演,其他同學在練習本上完成,做好后同桌交換評判,第一次可請兩位基礎較差的同學板演,第二次請中等層次的學生板演.

  【教法說明】面向全體,分層教學,能照顧兩極,使所有的同學有所發(fā)展.

  師:公式本身是用等號聯(lián)接起來的代數(shù)式,許多公式在實際中都有重要的用處,可以用公式直接計算還可以利用公式推導出新的公式.

  八、隨堂練習

 。ㄒ唬┨羁

  1.圓的半徑為R,它的面積________,周長_____________

  2.平行四邊形的底邊長是,高是,它的面積_____________;如果,,那么_________

  3.圓錐的底面半徑為,高是,那么它的體積__________如果,,那么_________

 。ǘ┮环N塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積V,如果,,,V是多少?

  九、布置作業(yè)

  (一)必做題課本第xx頁x、x、x第xx頁x組x

  (二)選做題課本第xx頁xx組x

初中數(shù)學教案8

  一、課題引入

  為了讓學生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎是實數(shù)理論,實數(shù)的基礎是有理數(shù),而有理數(shù)的基礎則是自然數(shù).自然數(shù)為數(shù)學結構提供了堅實的基礎.

  對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學家構造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學中許多思想方法.

  二、課題研究

  在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.

  為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).

  我們把所學過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.

  在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.

  于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.

  利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.

  借助實際例子能夠讓學生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.

  三、鞏固練習

  例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?

  思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.

  特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.

  再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的`水位正好處于正常水位的位置,則將其水位記作0cm.

  例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元

  日期周二周三周四周五

  開盤+0.16+0.25+0.78+2.12

  收盤-0.23-1.32-0.67-0.65

  當日收盤價

  試在表中填寫周二到周五該股票的收盤價.

  思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.

  因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:

  周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.

初中數(shù)學教案9

  一、教材分析

  本節(jié)內容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數(shù)學》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。

  二、設計思想

  本節(jié)內容是學生掌握了“整式”有關概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎,是“數(shù)”向“式”的正式過度,具有十分重要地位。

  八年級學生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結合教材,立足讓每個學生都有發(fā)展的宗旨,我采用合作探究的`學習方式開展教學活動,通過設計有針對性、多樣式的問題引導學生,給學生提供充足的、和諧的探索空間讓學生學習。通過學習活動不但培養(yǎng)學生化簡意識,提升數(shù)學運算技能而且讓學生深刻體會到數(shù)學是解決實際問題的重要工具,增強應用數(shù)學的意識。

  三、教學目標:

 。ㄒ唬┲R技能目標:

  1、理解同類項的含義,并能辨別同類項。

  2、掌握合并同類項的方法,熟練的合并同類項。

  3、掌握整式加減運算的方法,熟練進行運算。

 。ǘ┻^程方法目標:

  1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學生觀察、歸納、探究的能力。

  2、通過合并同類項、整式加減運算的練習活動,提高學生運算技能,提升運算的準確率培養(yǎng)學生化簡意識,發(fā)展學生的抽象概括能力。

  3、通過研究引例、探究例1的活動,發(fā)展學生的形象思維,初步培養(yǎng)學生的符號感。

  (三)情感價值目標:

  1、通過交流協(xié)商、分組探究,培養(yǎng)學生合作交流的意識和敢于探索未知問題的精神。

  2、通過學習活動培養(yǎng)學生科學、嚴謹?shù)膶W習態(tài)度。

  四、教學重、難點:

  合并同類項

  五、教學關鍵:

  同類項的概念

  六、教學準備:

  教師:

  1、篩選數(shù)學題目,精心設置問題情境。

  2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

  3、設計多媒體教學課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)

  學生:

  1、復習有關單項式的概念、有理數(shù)四則運算及去括號的法則)

  2、每小組制作大小不等的兩個長方體紙盒模型。

初中數(shù)學教案10

  教學目標:

  (一)知識與技能

  理解單項式及單項式系數(shù)、次數(shù)的概念;能準確迅速地確定一個單項式的系數(shù)和次數(shù);會用含字母的式子表示實際問題中的數(shù)量關系。

  (二)過程與方法

  1.在經歷用字母表示數(shù)量關系的過程中,發(fā)展符號感;

  2. 通過小組討論、合作學習等方式,經歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力

  (三)情感態(tài)度價值觀

  1.通過豐富多彩的現(xiàn)實情景,讓學生經歷從具體問題中抽象出數(shù)量關系,在解決問題中了解數(shù)學的價值,增長“用數(shù)學”的信心.

  2.通過用含字母的式子描述現(xiàn)實世界中的數(shù)量關系,認識到它是解決實際問題的重要數(shù)學工具之一。

  教學重、難點:

  重點:單項式及單項式系數(shù)、次數(shù)的概念。

  難點:單項式次數(shù)的概念;單項式的書寫格式及注意點。

  教學方法:

  引導——探究式

  在感性材料的基礎上,學生自主探究現(xiàn)實情景中用字母表示數(shù)的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.

  教具準備:

  多媒體課件、小黑板.

  教學過程:

  一、 創(chuàng)設情境,引入新課

  出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向學生介紹青藏鐵路所創(chuàng)造的歷史之最。

  情境問題:

  青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?

  設計意圖:從學生熟悉的情境出發(fā),創(chuàng)設情境,讓學生感受青藏鐵路的偉大成就,激發(fā)

  愛國主義情感,得到一次情感教育。

  解:根據(jù)路程、速度、時間之間的關系:路程=速度×時間

  2小時行駛的路程是:100×2=200(千米)

  3小時行駛的路程是:100×3=300(千米)

  t小時行駛的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出現(xiàn)乘號,通常將乘號寫作“ · ”或省略不寫。

  如:100×a可以寫成100a或100a。

  代數(shù)式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來的式子。

  代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關系,本節(jié)我們就來學習最基本也是最重要的一類代數(shù)式整式。

  設計意圖:從學生已有的數(shù)學經驗:路程=速度×時間出發(fā),建立新舊知識之間的聯(lián)系

  讓學生歷一個從一般到特殊再到一般的認識過程,發(fā)展學生的認知觀念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。

  1、邊長為a的正方體的表面積是__,體積是__.

  2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。

  3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。

  4、數(shù)n的相反數(shù)是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它們有什么共同的特點?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  單項式:數(shù)與字母、字母與字母的乘積。

  注意:單獨的一個數(shù)或字母也是單項式。

  設計意圖:從熟悉的實際背景出發(fā),充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,獲得數(shù)學猜想和數(shù)學經驗,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。

  火眼金睛

  下列各代數(shù)式中哪些是單項式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  設計意圖:加強學生對不同形式的單項式的直觀認識。

  解剖單項式

  系數(shù):單項式中的數(shù)字因數(shù)。

  如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的系數(shù)是 。

  次數(shù):一個單項式中的所有字母的指數(shù)的和。

  如:-3x的次數(shù)是 ,ab的次數(shù)是 。

  小試身手

  單項式 2a 2 -1.2h xy2 -t2 -32x2y

  系數(shù)

  次數(shù)

  設計意圖:了解學生對單項式系數(shù)、次數(shù)的概念是否理解,找出存在的問題,從而進一步鞏固概念。

  單項式的注意點:

  (1)數(shù)與字母相乘時,數(shù)應寫在字母的___,且乘號可_________;

  (2)帶分數(shù)作為系數(shù)時,應改寫成_______的形式;

  (3)式子中若出現(xiàn)相除時,應把除號寫成____的形式;

  (4)把“1”或“-1”作為項的系數(shù)時,“1”可以__不寫。

  行家看門道

  ①1x ②-1x

 、踑×3 ④a÷2

 、 ⑥m的系數(shù)為1,次數(shù)為0

  ⑦ 的系數(shù)為2,次數(shù)為2

  設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。

  三、例題講解,鞏固新知

  例1:用單項式填空,并指出它們的系數(shù)和次數(shù):

  (1)每包書有12冊,n包書有 冊;

  (2)底邊長為a,高為h的三角形的面積 ;

  (3)一個長方體的長和寬都是a,高是h,它的體積是 ;

  (4)一臺電視機原價a元,現(xiàn)按原價的9折出售,這臺電視機現(xiàn)在的售價

  為 元;

  (5)一個長方形的長0.9,寬是a,這個長方形的面積是 .

  解:(1)12n,它的系數(shù)是12,次數(shù)是1

  (2) ,它的系數(shù)是 , 次數(shù)是2;

  (3)a2h,它的系數(shù)是1,次數(shù)是3;

  (4)0.9a,它的系數(shù)是0.9,次數(shù)是1;

  (5)0.9a,它的系數(shù)是0.9,次數(shù)是1。

  設計意圖:學生能用單項式表示簡單的實際問題中的數(shù)量關系,并進一步鞏固單項式的系數(shù)、次數(shù)的概念。

  試一試

  你還能賦予0.9a一個含義嗎?

  設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發(fā)散學生思維。

  大膽嘗試

  寫出一個單項式,使它的系數(shù)是2,次數(shù)是3.

  設計意圖:充分發(fā)揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發(fā)他們的學習興趣。

  四、拓展提高

  嘗試應用

  用單項式填空,并指出它們的系數(shù)和次數(shù):

  (1)全校學生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;

  (2)一輛長途汽車從楊柳村出發(fā),3小時后到達相距s千米的溪河鎮(zhèn),這輛長途汽車的平均速度是 ;

  (3)產量由m千克增長10%,就達到 千克;

  設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數(shù)、次數(shù)的概念。

  能力提升

  1、已知-xay是關于x、y的'三次單項式,那么a= ,b= .

  2、若-ax2yb+1是關于x、y的五次單項式,且系數(shù)為-3,則a= ,b= .

  設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。

  五、小結:

  本節(jié)課你感受到了嗎?

  生活中處處有數(shù)學

  本節(jié)課我們學了什么?你能說說你的收獲嗎?

  1、單項式的概念: 數(shù)與字母、字母與字母的乘積。

  2、單項式的系數(shù)、次數(shù)的概念。

  系數(shù):單項中的數(shù)字因數(shù);

  次數(shù):單項中所有字母的指數(shù)和。

  3、會用單項式表示實際問題中的數(shù)量關系,注意列式時式子要規(guī)范書寫。

  設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數(shù)學活動經驗,促進學生形成良好的心理品質。

  結束寄語

  悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!

  設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。

  六、板書設計

  2.1 整式

  單項式概念 探究 例1 多

  單項式的系數(shù)概念 觀察交流 嘗試應用 媒

  單項式的次數(shù)概念 能力提升 體

  七、作業(yè):

  1.作業(yè)本(必做)。

  2. 請下面圖片設計一個故事情境,要求其中包含的數(shù)量關系能夠用單項式表示,并且指出它們的系數(shù)和次數(shù)(選做)。

  設計意圖:布置分層作業(yè),既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識。

  八、設計理念:

  本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。

  針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發(fā)引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,同時注重培養(yǎng)學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。

初中數(shù)學教案11

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.

  2.掌握直線平行的條件,領悟歸納和轉化的數(shù)學思想

  學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.

  一、探索直線平行的條件

  平行線的'判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )

  2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.

  五、作業(yè)課本15頁-16頁練習的1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空

  間觀念,推理能力和有條理表達能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

  學習重點:直線平行的條件的應用.

  學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.

  一、學習過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習:

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因為∠1=∠4,所以DE∥AB

  B.因為∠2=∠3,所以AB∥EC

  C.因為∠5=∠A,所以AB∥DE

  D.因為∠ADE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

初中數(shù)學教案12

  學習目標:

  1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系

  2、通過類比平行四邊形的性質定理,推導并掌握矩形的性質定理,會用定理進行一些簡單的計算證明、

  3、通過矩形的對角線相等這一性質能推導出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內在聯(lián)系,發(fā)展學生的合理推理的能力

  學習重難點:

  重點:矩形的性質定理

  難點:靈活應用矩形的性質進行有關的計算與證明

  課前準備

  教具準備:活動平行四邊形框架、教師準備PPT課件

  教學過程:

  知識回顧

  1、什么叫平行四邊形?

  2、平行四邊形有哪些性質?

  【設計意圖】:

  通過對舊知的復習,一方面鞏固就知,另一方面為學習新知做好鋪墊

  合作探究一:矩形的定義

  閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?

  用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當平行四邊形的一個內角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  【設計意圖】:

  通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學生更多的思考空間,促進學生積極思考,發(fā)展學生的思維

  歸納:有一個角是直角的平行四邊形叫做矩形、

  合作探究二:矩形的性質定理

  1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題

  2、小組合作:完成對性質的證明過程

  【設計意圖】:

  通過利用手中的矩形紙片動手操作使學生對矩形的性質獲得豐富的直觀體驗,為總結矩形的性質定理打下堅實基礎

  矩形的性質定理1:矩形的四個角都是直角

  矩形的性質定理2:矩形的兩條對角線相等

  合作探究三:直角三角形的性質定理3

  設矩形的對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的'特殊線段

  (BO是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關系,為什么?

  【設計意圖】:

  根據(jù)圖形學生很容易猜想結果,關鍵是從數(shù)學的角度證明留足充分的時間讓學生交流,教師適時引導,明確論證方法、學生獨立完成證明,以培養(yǎng)學生的推理能力、讓學生感受數(shù)學結論的確定性和證明的必要性

  結論:直角三角形斜邊上的中線等于斜邊的一半

  例題講解:

  例1、如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?

  當堂檢測:

  1、矩形具有而平行四邊形不具有的性質()

 。ˋ)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線

 。1)若BD=3㎝,則AC=㎝

 。2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長

  4、工人師傅做鋁合金窗框分下面三個步驟進行:

 。1)先截出兩對符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;

 。2)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據(jù)的數(shù)學道理是__________;

 。3)將直角尺靠緊窗框的一個角(如圖3)調整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據(jù)的數(shù)學道理是________________。

  課堂小結:

  請說出你本節(jié)課的收獲,與大家一塊分享。

  作業(yè):

  課本P、20第2題

  板書設計:

  xxx

初中數(shù)學教案13

  教學目標:

  1、進一步理解函數(shù)的概念,能從簡單的實際事例中,抽象出函數(shù)關系,列出函數(shù)解析式;

  2、使學生分清常量與變量,并能確定自變量的取值范圍.

  3、會求函數(shù)值,并體會自變量與函數(shù)值間的對應關系.

  4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.

  5、通過函數(shù)的教學使學生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.

  教學重點:了解函數(shù)的意義,會求自變量的取值范圍及求函數(shù)值.

  教學難點:函數(shù)概念的抽象性.

  教學過程:

 。ㄒ唬┮胄抡n:

  上一節(jié)課我們講了函數(shù)的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數(shù).

  生活中有很多實例反映了函數(shù)關系,你能舉出一個,并指出式中的自變量與函數(shù)嗎?

  1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數(shù)n(個)的關系.

  2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數(shù)n(個)與單價(a)元的關系.

  解:1、y=30n

  y是函數(shù),n是自變量

  2、n是函數(shù),a是自變量.

 。ǘ┲v授新課

  剛才所舉例子中的函數(shù),都是利用數(shù)學式子即解析式表示的.這種用數(shù)學式子表示函數(shù)時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數(shù)n必須是正整數(shù).

  例1、求下列函數(shù)中自變量x的取值范圍.

 。1)(2)

 。3)(4)

 。5)(6)

  分析:在(1)、(2)中,x取任意實數(shù),與都有意義.

 。3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.

  同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.

  第(5)小題,是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零.的被開方數(shù)是.

  同理,第(6)小題也是二次根式,是被開方數(shù),

  小結:從上面的例題中可以看出函數(shù)的解析式是整數(shù)時,自變量可取全體實數(shù);函數(shù)的解析式是分式時,自變量的取值應使分母不為零;函數(shù)的解析式是二次根式時,自變量的取值應使被開方數(shù)大于、等于零.

  注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問題也與次類似.

  但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關系.即2與-1這兩個值x都不能取.

  例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.

 。1)若設一般車停放的輛次數(shù)為x,總的保管費收入為y元,試寫出y關于x的函數(shù)關系式;

 。2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數(shù)的`范圍.

  解:(1)

 。▁是正整數(shù),

  (2)若變速車的輛次不小于25%,但不大于40%,

  則收入在1225元至1330元之間

  總結:對于反映實際問題的函數(shù)關系,應使得實際問題有意義.這樣,就要求聯(lián)系實際,具體問題具體分析.

  對于函數(shù),當自變量時,相應的函數(shù)y的值是.60叫做這個函數(shù)當時的函數(shù)值.

  例3、求下列函數(shù)當時的函數(shù)值:

 。1)————(2)—————

 。3)————(4)——————

  注:本例既鍛煉了學生的計算能力,又創(chuàng)設了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應.以此加深對函數(shù)的理解.

  (二)小結:

  這節(jié)課,我們進一步地研究了有關函數(shù)的概念.在研究函數(shù)關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應的函數(shù)值.另外,對于反映實際問題的函數(shù)關系,要具體問題具體分析.

  作業(yè):習題13.2A組2、3、5

  今天的內容就介紹到這里了。

初中數(shù)學教案14

  初中數(shù)學分層教學的理論與實踐

  天山六中裴煥民

  一、分層教學的含義

  分層教學是指教師在學生知識基礎、智力因素存在明顯差異的情況下,有區(qū)別地設計教學環(huán)節(jié)進行教學,遵循因材施教的原則,有針對性地實施對不同類別學生的學習指導,不僅根據(jù)學生的不同選擇不同的教法、布置作業(yè),還因材施“助”、因材施“改”、因材施“教”,使每個學生都能在原有的基礎上得以發(fā)展,從而達到不同類別的教學目標的一種教學方法。

  分層教學是“著眼于與學生的可持續(xù)性的、良性的發(fā)展”的教育觀念下的一種教學實施策略。所謂分層教學(同班、同年級分層次教學)就是教師在教授同一教學內容時,對同一個班內不同知識水平和接受能力的優(yōu)、中、差生以相應的三個層次的教學深度和廣度進行合講分練,做到課堂教學有的放矢,區(qū)別對待,使每個學生都在自己原來的基礎上學有所得,思有所進,在不同程度上有所提高,同步發(fā)展。教師的教學方法應從最低點起步,分類指導,逐步推進,做到“分合”有序,動靜結合,并分層設計練習,分層設計課堂,分層布置作業(yè),引導學生全員參與,各得進步。

  二、分層教學必要性分析

  1、教學現(xiàn)狀呼喚分層教學的實施

  義務教育的實施使小學畢業(yè)生全部升入初中學習,這樣,在同一班里,學生的知識、能力參差不齊。但是,應試教育留下的種種弊端抑制了各層次的學生的學習積極性和興趣,整齊劃一的教學要求,忽視了學生之間的差異。為了使教育面向全體學生,減輕部分學生過重的負擔,使他們在原有的基礎上有所提高,全面提高教學質量,又要使有特長的學生得到更進一步的發(fā)展。因此必須實施因材施教,根據(jù)不同的學生的具體情況,確立不同的教學目標,采取不同的教學方法,使其個性得到充分發(fā)展,為社會培養(yǎng)各種層次的有用之人。

  2、新課程改革呼喚分層教學的實施

  數(shù)學課程改革的核心是課程的實施,而教學是課程實施的基本途徑。課程改革歸根到底是要轉變教師的傳統(tǒng)教學觀念:包括教學方式的轉變——從“教”到

  “引”;知識技能掌握理念的轉變——從“滿堂灌”、“書山題!钡健霸谟H身經歷中體會、理解、掌握知識技能”,強調自我的情感體驗;教材觀的轉變——從“教教材”到“用教材”,教材變成我們引導學生探究知識的工具之一;評價機制的轉變——從“唯分數(shù)論”到“適合學生自身特點的發(fā)展”,這是實施分層教學的原動力,但也是現(xiàn)今新課程改革的一個難點。

  在新課改中實施分層教學法的目的是逐步樹立學困生學習的信心,激發(fā)中等生的學習潛力,擴大優(yōu)生的學習面。為了適應當前素質教育的需要,我們要采用針對性的矯正和幫助,進行分層教學,分類指導,及時反饋,從中探索出一條教學改革的新路子。

  3、學生個體差異的客觀存在

  心理學的研究結果表明:學生的學習能力差異是存在的,特別是學生在數(shù)學學習能力方面存在著較大的差異這已是一個不爭的事實。造成差異的原因有很多,學生的先天遺傳因素及環(huán)境、教育條件都有所不同,還有社會因素(即環(huán)境、教育條件、科學訓練),這些原因是對學生學習能力的形成起著決定性作用,所以學生所表現(xiàn)出的數(shù)學能力有明顯差異也是正常的。

  學生作為一個群體,存在著個體差異

 。1)智力差異。每個學生因為遺傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強;有的邏輯思維強;有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過人。

 。2)學習基礎差異。不同的學生在小學的數(shù)學狀況不一樣:有的學生數(shù)學十分優(yōu)秀,有的學生數(shù)學學習基本還沒入門,兩極分化相當嚴重。

 。3)學習品質差異。有的學生學習數(shù)學十分認真,有一套自己的數(shù)學學習方法,學得輕松愉快;而有的學生因為沒有入門,數(shù)學學得十分艱難,部分學生甚至對數(shù)學學習喪失了信心。

  4、分層次教學符合因材施教的原則

  目前我國大部分省市的數(shù)學教學采用的是統(tǒng)一教材、統(tǒng)一課時、統(tǒng)一教參,在學生學習能力存在差異的情況下,在教學過程中往往容易產全“顧中間、丟兩頭”。如不因材施教,就使部分學生就成了陪讀、陪考。數(shù)學能力強的學生潛能得不到充分發(fā)揮,能力稍差的學生就可能變成了后進生。有研究結果表明:教師、

  家庭、社會、學生、學校等方面的因素都有可能是形成后進生的原因,其中有50%的原因是來自教師在教學中的失誤。我們的基礎教育既要注意確保學生的共性需求,又要顧及學生的個性發(fā)展,所以進行分層教育確有必要。

  5、分層次教學能夠有效推動教學過程的展開

  按照教育家達尼洛夫關于教學過程的動力理論之說,認為只有學生學習的可能性與對他們的要求是一致的.,才可能推動教學過程的展開,從而加快學習成績的提高,而這兩者的統(tǒng)一關系若被破壞,就會造成學業(yè)的不良后果。學生的學習可能是由他們生理和心理的一般發(fā)展水平與對某項學習的具體準備狀態(tài)所決定的,學生學習可能性的構成因素中既有相對穩(wěn)定的因素,又有易變的因素。相對穩(wěn)定的因素,決定了學生在一段時間內可能達到的學習水平的范圍,決定了學業(yè)不良學生要取得學業(yè)進步只能是一個漸進的過程;易變的因素,使學生能在:一定的主客觀條件下提高或降低自己的實際可能性水平,從而促進或阻礙學習可能性與教學要求之間矛盾的轉化,加快學習成績提高或降低的速度。由此可見,分層次教學是著眼于協(xié)調教學要求與學生學習可能性的關系的一種極好的手段,使它們之間能相適應,從而推動教學過程的展開。

  三、分層教學研究的目的意義

  捷克教育家夸美紐斯在十七世紀提出來的班級授課制以其大大提高教學效率、加強學校工作的計劃性和實際社會效益風行了三百多年后,其固有的不利于學生創(chuàng)造能力的培養(yǎng)和因材施教等種種弊端與社會發(fā)展對教育的要求的矛盾越來越尖銳起來。隨著科學技術的發(fā)展,社會日益進步,教育資源和教育需求的增長和變化,班級授課制在我國做出輝煌的貢獻后逐步顯現(xiàn)出其先天的嚴重不足。教師在班級授課制下對能力強的學生“吃不飽”,能力欠佳的學生“吃不消”普遍感到力不從心。分層教學在這種情況下應運而生,成為優(yōu)化單一班級授課制的有利途徑。

  1.有利于所有學生的提高:分層教學法的實施,避免了部分學生在課堂上完成作業(yè)后無所事事,同時,所有學生都體驗到學有所成,增強了學習信心。

  2.有利于課堂效率的提高:首先,教師事先針對各層學生設計了不同的教學目標與練習,使得處于不同層的學生都能“摘到桃子”,獲得成功的喜悅,這極大地優(yōu)化了教師與學生的關系,從而提高師生合作、交流的效率;其次,教師在

  備課時事先估計了在各層中可能出現(xiàn)的問題,并做了充分的準備,使得實際施教更有的放矢、目標明確、針對性強,增大了課堂教學的容量。總之,通過這一教學法,有利于提高課堂教學的質量和效率。

  3.有利于教師全面能力的提升:通過有效地組織好對各層學生的教學,靈活地安排不同的層次策略,極大地鍛煉了教師的組織調控與隨機應變能力。分層教學本身引出的思考和學生在分層教學中提出來的挑戰(zhàn)都有利于教師能力的全面提升。

  四、分層教學的理論基礎

  1、掌握學習理論

  布魯姆提出的“掌握學習理論”主張:“給學生足夠的學習時間,同時使他們獲得科學的學習方法,通過他們自己的努力,應該都可以掌握學習內容”!安煌瑢W生需要用不同的方法去教,不同學生對不同的教學內容能持久地集中注意力”。為了實現(xiàn)這個目標,就應該采取分層教學的方法。

  2、教學最優(yōu)化理論

  巴班斯基的“教學最優(yōu)化理論”的核心是:教學過程的最優(yōu)化是選擇一種能使教師和學生在花費最少的必要時間和精力的情況下獲得最好的教學效果的教學方案并加以實施。分層教學是實現(xiàn)這一目標的有效方式之一。

  3、新課標的基本理念

  《數(shù)學課程標準》提出了一種全新的數(shù)學課程理念:“人人學有價值的數(shù)學;人人都能獲得必需的數(shù)學;不同的人在數(shù)學上得到不同的發(fā)展”。面向全體學生,體現(xiàn)了義務教育的基礎性、普及性和發(fā)展性。不僅為數(shù)學教學內容的設定指出方向,而且考慮到學生的可持續(xù)發(fā)展對數(shù)學的需求,并為學生學習數(shù)學可能產生的差異性留有充分的余地。

  五、分層教學實施的指導思想及原則

  首先,分層次教學的主體是班級教學為主,按層次教學為輔,層次分得好壞直接影響到“分層次教學”的成功與否。其指導思想是變傳統(tǒng)的應試教育為素質教育,是成績差異的分層,而不是人格的分層。為了不給差生增加心理負擔,必須做好分層前的思想工作,了解學生的心理特點,講情道理:學習成績的差異是客觀存在的,分層次教學的目的不是人為地制造等級,而是采用不同的方法幫助

  他們提高學習成績,讓不同成績的學生最大限度地發(fā)揮他們的潛力,以逐步縮小差距,達到班級整體優(yōu)化。

  在對學生進行分層要堅持尊重學生,師生磋商,動態(tài)分層的原則。應該向學生宣布分層方案的設計,講清分層的目的和意義,以統(tǒng)一師生認識;指導每位學生實事求是地估計自己,通過學生自我評估,完全由學生自己自愿選擇適應自己的層次;最后,教師根據(jù)學生自愿選擇的情況進行合理性分析,若有必要,在征得學生同意的基礎上作個別調整之后,公布分層結果。這樣使部分學生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學生學習數(shù)學的興趣。

  其次,在分層教學中應注意下列原則的使用:

 、偎较嘟瓌t:在分層時應將學習狀況相近的學生歸為“同一層”;

 、诓顒e模糊原則:分層是動態(tài)的、可變的,有進步的可以“升級”,退步的應“轉級”,且分層結果不予公布;

 、鄹惺艹晒υ瓌t:在制定各層次教學目標、方法、練習、作業(yè)時,應使學生跳一跳,才可摘到蘋果為宜,在分層中感受到成功的喜悅;

  ④零整分合原則:教學內容的合與分,對學生的“放”與“扶”,以及課外的分層輔導都應遵守這個原則;

 、菡{節(jié)控制原則:由于各層次學生要求不一,因此在課堂上以學、議為主,教師要善于激趣、指導、精講、引思,調節(jié)并控制止好各層次學生的學習,做好分類指導;

 、薹e極激勵原則:對各層次學生的評價,以縱向性為主。教師通過觀察、反饋信息,及時表揚激勵,對進步大的學生及時調到高一層次,相對落后的同意轉層。從而促進各層學生學習的積極性,使所有學生隨時都處于最佳的學習狀態(tài)。

  六、實施分層教學的策略與措施

 。ㄒ唬┓謱咏ńM

  把學生分層編組是實施分層教學、分類指導的基礎。學生的分類應遵循“多維性原則、自愿性原則和動態(tài)性原則”,教師通過對全班學生平時的數(shù)學學習的智能,技能、心理、成績、在校表現(xiàn)、家庭環(huán)境等,并對所獲得的數(shù)據(jù)資料進行綜合分析,分類歸檔。在此基礎上,將學生分成好、中、差層次的學習小組,讓

初中數(shù)學教案15

  初中數(shù)學分層次教學案例

  【案例主題:】學生參與教學,體現(xiàn)了現(xiàn)代教學理念:活動、合作、自由、民主、創(chuàng)新。

  【背景:】我在進行數(shù)學七年級上冊圖形的認識的應用教學時,處理定理時,隨著教學過程的深入,很有感想:??

  例題:課本p123證明兩個角之間的關系,

  請同學們總結一下他們可能出現(xiàn)的情況。

  【活動過程】師:誰能總結一下判定兩個角比較大小的方法?(學生都在緊張的思考中)(突然間,我發(fā)現(xiàn)一名平時學習較困難的學生閆家銜這次第一個舉起了手,很驚奇,便馬上讓他發(fā)言了。也有了我思想上的一次飛躍。)

  生:我認為前面,度量,而剛才第一條,第二條的疊合法。(這時,教室里鴉雀無聲,個別同學在譏笑,這位學生頓時有些難堪,想坐下去,我趕緊制止。)

  師:很好!那你準備應該怎么做呢?生:嗯,(一下子來勁了):接著這位同學上黑板畫了圖,寫出自己度量的方法和自己的想法。

  師:剛才閆家銜同學真的不錯,不但提出了新的方法,而且還給出了說理,我和全班同學都為你今天的表現(xiàn)感到非常高興(教室里響起一片掌聲)。要有勇氣展示自己,你今天的表現(xiàn)就非常非常地出色,你今后的表現(xiàn)一定會更出色。好,下面我就讓我們一同來總結一下菱形的證明方法。

  在師生的共同研討下得出了這些方法。

  師:今天的課程內容還有一項,那就是請閆家銜同學談談這堂課的感想。

  生:??以前我不敢發(fā)言,我怕說的不對會被同學們笑話,而今天的他的方法恰好是我前幾天才預習過的,所以一下子??我今天才發(fā)現(xiàn)不是這樣??我今后還會努力發(fā)言的??

  【理念反思】:從這一個學生的舉手發(fā)言到說得頭頭是道的“意外”中,我明白了:學生需要一個能充分展示自我的自由空間,作為老師,我們需要給學生一個自由的民主的氛圍,能充分培養(yǎng)學生的自信,使“學困生”也能產生發(fā)言的欲望,也能對問題暢所欲言,教師還應能及時捕捉到這一閃光點,給每一位學生都有展示的'機會。也就是說要使學生全部積極參與教學,因為它集中體現(xiàn)了現(xiàn)代課程理念:活動、合作、自由、民主、創(chuàng)新。

  1、活動、合作是現(xiàn)代課程中的新的理念,只有參與,才能合作創(chuàng)新。

  2、民主是現(xiàn)代課程中的重要理念。民主最直接的體現(xiàn)是在課程實施中學生能夠平等地參與。沒有主動參與,只有被動接受,就沒有民主可言。相反,如果沒有民主,學生的參與

  就不是主動性參與,而是被動的、消極的參與。

  3、在提問時,應設計開放性的問題,如:“請你幫助設計一下,有幾種方案等問題?這樣才沒有限制學生的思維,給學生創(chuàng)設一個自由的空間,學生在這個空間中可以按自己的方式展開想象,才能暢所欲言。

  4、在課堂上,老師應不只關注“優(yōu)等生”,而應平等地對待每一個學生,讓學困生”和“學優(yōu)生”同時享有尊嚴和擁有一份自信。特別是發(fā)現(xiàn)到一個學困生在舉了手時,應及時給“學困生”展示的機會,讓他們發(fā)言,學生在發(fā)言中,雖然有時不能把問題完全解決,老師也要充分的肯定這個學生的成績和能夠大膽發(fā)言的勇氣。

【初中數(shù)學教案】相關文章:

數(shù)學教案圓的周長10-22

線段,直線,射線數(shù)學教案10-29

小學數(shù)學教案(精選18篇)08-22

小學數(shù)學教案(精選8篇)10-29

小學數(shù)學教案(精選20篇)01-14

初二數(shù)學教案《勾股定理》11-01

比的基本性質數(shù)學教案11-06

角的比較數(shù)學教案(精選10篇)11-18

大班數(shù)學教案:分禮物03-03

小班數(shù)學教案(精選10篇)10-29