- 相關(guān)推薦
組合的教學(xué)設(shè)計(jì)
組合的教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
。1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
。2)使學(xué)生掌握組合數(shù)的計(jì)算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;
。3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;
。4)通過對排列、組合問題求解與剖析,培養(yǎng)學(xué)生學(xué)習(xí)興趣和思維深刻性,學(xué)生具有嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)難點(diǎn)分析
本小節(jié)的重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點(diǎn)是解組合的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對加法原理與乘法原理的掌握和應(yīng)用,并將這兩個(gè)原理的基本思想貫穿在解決組合應(yīng)用題當(dāng)中。
組合與組合數(shù),也有上面類似的關(guān)系。從n個(gè)不同元素中任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中任取m個(gè)元素的一個(gè)組合。所有這些不同的組合的個(gè)數(shù)叫做組合數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的一個(gè)集合(無序集),相當(dāng)于一個(gè)組合,而這種集合的個(gè)數(shù),就是相應(yīng)的組合數(shù)。
解排列組合應(yīng)用題時(shí)主要應(yīng)抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).
三、教法設(shè)計(jì)
1.對于基礎(chǔ)較好的學(xué)生,建議把排列與組合的概念進(jìn)行對比的進(jìn)行學(xué)習(xí),這樣有利于搞請這兩組概念的區(qū)別與聯(lián)系.
2.學(xué)生與老師可以合編一些排列組合問題,如“45人中選出5人當(dāng)班干部有多少種選法?”與“45人中選出5人分別擔(dān)任班長、副班長、體委、學(xué)委、生委有多少種選法?”這是兩個(gè)相近問題,同學(xué)們會(huì)根據(jù)自己身邊的實(shí)際可以編出各種各樣的具有特色的問題,教師要引導(dǎo)學(xué)生辨認(rèn)哪個(gè)是排列問題,哪個(gè)是組合問題.這樣既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又在編題辨題中澄清了概念.
為了理解排列與組合的概念,建議大家學(xué)會(huì)畫排列與組合的樹圖.如,從a,b,c,d 4個(gè)元素中取出3個(gè)元素的排列樹圖與組合樹圖分別為:
排列樹圖
由排列樹圖得到,從a,b,c,d 取出3個(gè)元素的所有排列有24個(gè),它們分別是:
組合樹圖
由組合樹圖可得,從a,b,c,d中取出3個(gè)元素的組合有4個(gè),它們是(abc),(abd),(acd),(bcd).
從以上兩組樹圖清楚的告訴我們,排列樹圖是對稱的,組合圖式不是對稱的,之所以排列樹圖具有對稱性,是因?yàn)閷τ赼,b,c,d四個(gè)字母哪一個(gè)都有在第一位的機(jī)會(huì),哪一個(gè)都有在第二位的機(jī)會(huì),哪一個(gè)都有在第三位的機(jī)會(huì),而組合只考慮字母不考慮順序,為實(shí)現(xiàn)無順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無順序,這樣組合就有了自己的樹圖.
學(xué)會(huì)畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導(dǎo)組合數(shù)的計(jì)算公式.
3.排列組合的應(yīng)用問題,教師應(yīng)從簡單問題問題入手,逐步到有一個(gè)附加條件的單純排列問題或組合問題,最后在設(shè)及排列與組合的綜合問題.
對于每一道題目,教師必須先讓學(xué)生獨(dú)立思考,在進(jìn)行全班討論,對于學(xué)生的每一種解法,教師要先讓學(xué)生判斷正誤,在給予點(diǎn)播.對于排列、組合應(yīng)用問題的解決我們提倡一題多解,這樣有利于培養(yǎng)學(xué)生的分析問題解決問題的能力,在學(xué)生的多種解法基礎(chǔ)上教師要引導(dǎo)學(xué)生選擇最佳方案,總結(jié)解題規(guī)律.對于學(xué)生解題中的常見錯(cuò)誤,教師一定要講明道理,認(rèn)真分析錯(cuò)誤原因,使學(xué)生在是非的判斷得以提高.
4.兩個(gè)性質(zhì)定理教學(xué)時(shí),對定理1,可以用下例來說明:從4個(gè)不同的元素a,b,c,d里每次取出3個(gè)元素的組合及每次取出1個(gè)元素的組合分別是
這就說明從4個(gè)不同的元素里每次取出3個(gè)元素的組合與從4個(gè)元素里每次取出1個(gè)元素的組合是—一對應(yīng)的.
對定理2,可啟發(fā)學(xué)生從下面問題的討論得出.從n個(gè)不同元素 , ,…, 里每次取出m個(gè)不同的元素( ),問:(1)可以組成多少個(gè)組合;(2)在這些組合里,有多少個(gè)是不含有 的;(3)在這些組合里,有多少個(gè)是含有 的;(4)從上面的結(jié)果,可以得出一個(gè)怎樣的公式.在此基礎(chǔ)上引出定理2.
對于 ,和 一樣,是一種規(guī)定.而學(xué)生常常誤以為是推算出來的,因此,教學(xué)時(shí)要講清楚.
教學(xué)設(shè)計(jì)示例
教學(xué)目標(biāo)
。1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
。2)使學(xué)生掌握組合數(shù)的計(jì)算公式;
。3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
難點(diǎn)是解組合的應(yīng)用題.
(-)導(dǎo)入新課
。ń處熁顒(dòng))提出下列思考問題,打出字幕.
。圩帜唬菀粭l鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
。▽W(xué)生活動(dòng))討論并回答.
答案提示:(1)排列;(2)組合.
。墼u述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
。厶岢鰡栴} 創(chuàng)設(shè)情境]
。ń處熁顒(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個(gè)組合是什么?
3.一個(gè)組合與一個(gè)排列有何區(qū)別?
。▽W(xué)生活動(dòng))閱讀回答.
。ń處熁顒(dòng))對照課文,逐一評析.
設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
。ń處熁顒(dòng))承接上述問題的回答,展示下面知識(shí).
。圩帜唬菽P停簭 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.
組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .
[評述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
。▽W(xué)生活動(dòng))傾聽、思索、記錄.
。ń處熁顒(dòng))提出思考問題.
。弁队埃 與 的關(guān)系如何?
。◣熒顒(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;
第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .
根據(jù)分步計(jì)數(shù)原理,得到(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.
設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.
【例題示范 探求方法】
(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.
。圩帜唬堇1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.
例2 計(jì)算:(1) ;(2) .
。▽W(xué)生活動(dòng))板演、示范.
。ń處熁顒(dòng))講評并指出用兩種方法計(jì)算例2的第2小題.
。圩帜唬堇3 已知 ,求 的所有值.
。▽W(xué)生活動(dòng))思考分析
。埸c(diǎn)評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.
【反饋練習(xí) 學(xué)會(huì)應(yīng)用】
(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評.
。壅n堂練習(xí)]課本P99練習(xí)第2,5,6題.
。垩a(bǔ)充練習(xí)]
[字幕]1.計(jì)算:
2.已知 ,求 .
。▽W(xué)生活動(dòng))板演、解答.
設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
【點(diǎn)評矯正 交流提高】
(教師活動(dòng))依照學(xué)生的板演,給予指正并總結(jié).
補(bǔ)充練習(xí)答案:
1.解:原式:
2.解:由題設(shè)得
整理化簡得 ,
解之,得 或 (因 ,舍去),
所以 ,所求
[字幕]小結(jié):
1.前一個(gè)公式主要用于計(jì)算具體的組合數(shù),而后一個(gè)公式則主要用于對含有字母的式子進(jìn)行化簡和論證.
2.在解含組合數(shù)的方程或不等式時(shí),一定要注意組合數(shù)的上、下標(biāo)的限制條件.
。▽W(xué)生活動(dòng))交流討論,總結(jié)記錄.
設(shè)計(jì)意圖:由“實(shí)踐——認(rèn)識(shí)——一實(shí)踐”的認(rèn)識(shí)論,教學(xué)時(shí)抓住“學(xué)習(xí)—一練習(xí)——反饋———小結(jié)”這些環(huán)節(jié),使教學(xué)目標(biāo)得以強(qiáng)化和落實(shí).
。ㄈ┬〗Y(jié)
(師生活動(dòng))共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計(jì)算的兩個(gè)公式.
。ㄋ模┎贾米鳂I(yè)
1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?
。ㄎ澹┱n后點(diǎn)評
在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.
作業(yè)參考答案
2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.
3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形
同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?
解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.
解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:
甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.
甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.
甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.
由加法原理得,賀卡分配方法有3+3+3=9種.
解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時(shí)還存在正向與逆向兩種思考途徑.
正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種)
逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種)。
說明(1)對一類元素不太多而利用排列或組合計(jì)算公式計(jì)算比較復(fù)雜,且容易重復(fù)遺漏計(jì)算的排列組合問題,?刹捎弥苯臃诸惡笥眉臃ㄔ磉M(jìn)行計(jì)算,如本例采用解法一的做法.
。2)設(shè)集合 ,如果S中元素的一個(gè)排列 滿足 ,則稱該排列為S的一個(gè)錯(cuò)位排列.本例就屬錯(cuò)位排列問題.如將S的所有錯(cuò)位排列數(shù)記為 ,則 有如下三個(gè)計(jì)算公式(李宇襄編著《組合數(shù)學(xué)》,北京師范大學(xué)出版社出版)
【組合的教學(xué)設(shè)計(jì)】相關(guān)文章:
排列組合教學(xué)反思04-08
《排列和組合》教學(xué)反思04-08
排列組合的教學(xué)反思01-12
簡單的排列與組合教學(xué)反思02-18
《組合圖形的面積》教學(xué)反思(精選20篇)09-21
《組合圖形的面積》數(shù)學(xué)教學(xué)反思(精選19篇)09-22
組合優(yōu)秀作文08-20