丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教學(xué)論文>教學(xué)計(jì)劃>高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃

時(shí)間:2022-07-08 19:22:52 教學(xué)計(jì)劃 我要投稿

精選高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃三篇

  日子如同白駒過隙,又迎來了一個(gè)全新的起點(diǎn),是時(shí)候開始寫計(jì)劃了。計(jì)劃怎么寫才能發(fā)揮它最大的作用呢?以下是小編整理的高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃3篇,僅供參考,歡迎大家閱讀。

精選高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃三篇

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃 篇1

  (一)教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡單集合的并集和交集.

  (2)能使用Venn圖表示集合的并集和交集運(yùn)算結(jié)果,體會(huì)直觀圖對(duì)理解抽象概念的作用。

  (3)掌握的關(guān)的術(shù)語和符號(hào),并會(huì)用它們正確進(jìn)行集合的并集與交集運(yùn)算。

  2.過程與方法

  通過對(duì)實(shí)例的分析、思考,獲得并集與交集運(yùn)算的法則,感知并集和交集運(yùn)算的實(shí)質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識(shí)和能力.

  3.情感、態(tài)度與價(jià)值觀

  通過集合的并集與交集運(yùn)算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)思想認(rèn)識(shí)客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

  (二)教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):交集、并集運(yùn)算的含義,識(shí)記與運(yùn)用.

  難點(diǎn):弄清交集、并集的含義,認(rèn)識(shí)符號(hào)之間的區(qū)別與聯(lián)系

  (三)教學(xué)方法

  在思考中感知知識(shí),在合作交流中形成知識(shí),在獨(dú)立鉆研和探究中提升思維能力,嘗試實(shí)踐與交流相結(jié)合.

  (四)教學(xué)過程

  教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動(dòng) 設(shè)計(jì)意圖

  提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實(shí)數(shù)加法運(yùn)算,探究集合能否進(jìn)行類似“加法”運(yùn)算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理數(shù)},

  B = {x | x是無理數(shù)},

  C = {x | x是實(shí)數(shù)}.

  師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實(shí)數(shù)能進(jìn)行加減運(yùn)算,探究集合是否有相應(yīng)運(yùn)算.

  生:集合A與B的元素合并構(gòu)成C.

  師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運(yùn)算. 生疑析疑,

  導(dǎo)入新知

  形成

  概念

  思考:并集運(yùn)算.

  集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

  定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

  師:請(qǐng)同學(xué)們將上述兩組實(shí)例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.

  學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

  應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 設(shè)集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  師:求并集時(shí),兩集合的相同元素如何在并集中表示.

  生:遵循集合元素的互異性.

  師:涉及不等式型集合問題.

  注意利用數(shù)軸,運(yùn)用數(shù)形結(jié)合思想求解.

  生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時(shí)注意集合元素的互異性. 學(xué)生嘗試求解,老師適時(shí)適當(dāng)指導(dǎo),評(píng)析.

  固化概念

  提升能力

  探究性質(zhì) ①A∪A = A, ②A∪ = A,

 、跘∪B = B∪A,

 、 ∪B, ∪B.

  老師要求學(xué)生對(duì)性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.

  形成概念 自學(xué)提要:

 、儆蓛杉系乃性睾喜⒖傻脙杉系牟⒓,而由兩集合的公共元素組成的集合又會(huì)是兩集合的一種怎樣的運(yùn)算?

  ②交集運(yùn)算具有的運(yùn)算性質(zhì)呢?

  交集的定義.

  由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn圖表示

  老師給出自學(xué)提要,學(xué)生在老師的`引導(dǎo)下自我學(xué)習(xí)交集知識(shí),自我體會(huì)交集運(yùn)算的含義. 并總結(jié)交集的性質(zhì).

  生:①A∩A = A;

 、贏∩ = ;

  ③A∩B = B∩A;

 、蹵∩ ,A∩ .

  師:適當(dāng)闡述上述性質(zhì).

  自學(xué)輔導(dǎo),合作交流,探究交集運(yùn)算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

  應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新華中學(xué)開運(yùn)動(dòng)會(huì),設(shè)

  A = {x | x是新華中學(xué)高一年級(jí)參加百米賽跑的同學(xué)},

  B = {x | x是新華中學(xué)高一年級(jí)參加跳高比賽的同學(xué)},求A∩B.

  例2 設(shè)平面內(nèi)直線l1上點(diǎn)的集合為L1,直線l2上點(diǎn)的集合為L2,試用集合的運(yùn)算表示l1,l2的位置關(guān)系. 學(xué)生上臺(tái)板演,老師點(diǎn)評(píng)、總結(jié).

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新華中學(xué)高一年級(jí)中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級(jí)既參加百米賽跑又參加跳高比賽的同學(xué)}.

  例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點(diǎn),平行或重合.

  (1)直線l1,l2相交于一點(diǎn)P可表示為 L1∩L2 = {點(diǎn)P};

  (2)直線l1,l2平行可表示為

  L1∩L2 = ;

  (3)直線l1,l2重合可表示為

  L1∩L2 = L1 = L2. 提升學(xué)生的動(dòng)手實(shí)踐能力.

  歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性質(zhì):①A∩A = A,A∪A = A,

 、贏∩ = ,A∪ = A,

 、跘∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)

  老師點(diǎn)評(píng)、闡述 歸納知識(shí)、構(gòu)建知識(shí)網(wǎng)絡(luò)

  課后作業(yè) 1.1第三課時(shí) 習(xí)案 學(xué)生獨(dú)立完成 鞏固知識(shí),提升能力,反思升華

  備選例題

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  當(dāng)a = –3時(shí),A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  當(dāng)a = 1時(shí),A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范圍;

  (2)若A∪B = {x | x<1},求a的取值范圍.

  【解析】(1)如下圖所示:A = {x | –1

  ∴數(shù)軸上點(diǎn)x = a在x = – 1左側(cè).

  ∴a≤–1.

  (2)如右圖所示:A = {x | –1

  ∴數(shù)軸上點(diǎn)x = a在x = –1和x = 1之間.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實(shí)數(shù)時(shí),A∩B 與A∩C = 同時(shí)成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同時(shí)成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  當(dāng)a = 5時(shí),A = {x | x2 – 5x + 6 = 0} = {2,3},此時(shí)A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.

  當(dāng)a = –2時(shí),A = {x | x2 + 2x – 15 = 0} = {3,5},此時(shí)A∩B 與A∩C = ,同時(shí)成立,∴滿足條件的實(shí)數(shù)a = –2.

  例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  當(dāng)x = 3時(shí),A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

  當(dāng)x = –3時(shí),A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

  當(dāng)x = 5時(shí),A = {25,9,– 4},B = {0,– 4,9},此時(shí)A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

  綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃 篇2

  一、學(xué)生狀況分析

  學(xué)生整體水平一般,成績以中等為主,中上不多,后進(jìn)生也有一些。幾個(gè)班中,從上課一周來看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。

  二、教材簡析

  使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)(A版)》,教材在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點(diǎn)線平面間的位置關(guān)系;直線與方程;圓與方程)。

  三、教學(xué)任務(wù)

  本期授課內(nèi)容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。

  四、教學(xué)質(zhì)量目標(biāo)

  1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。

  2、提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

  3、提高學(xué)生提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

  4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

  5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施

  重點(diǎn)工作:

  認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的.數(shù)學(xué)能力都得到提高和發(fā)展。

  分層推進(jìn)措施

  1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

  2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

  3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)接受知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。

  6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃 篇3

  指導(dǎo)思想:

  (1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計(jì)的初步知識(shí),計(jì)算機(jī)的使用等。

  (2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。

  (3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。

  (4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  (5)學(xué)會(huì)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。

 。6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

  學(xué)情分析及相關(guān)措施:

  高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對(duì)新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。

  具體措施如下:

  (1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

 。2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn).所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。

 。3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。

 。4)讓學(xué)生通過單元考試,檢測(cè)自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備

  (5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

 。6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。

  教學(xué)進(jìn)度安排:

  周 次

  時(shí)

  內(nèi) 容

  重 點(diǎn)、難 點(diǎn)

  第1周

  9.2~9.6

  集合的含義與表示、

  集合間的基本關(guān)系、

  會(huì)求兩個(gè)簡單集合的'并集與交集;會(huì)求給定子集的補(bǔ)集;

  難點(diǎn):理解概念

  第2周

  9.7~9.13

  集合的基本運(yùn)算

  函數(shù)的概念、

  函數(shù)的表示法

  能使用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,會(huì)求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用

  第3周

  9.14~9.20

  單調(diào)性與最值、

  奇偶性、實(shí)習(xí)、小結(jié)

  學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義

  第4周

  9.21~9.27

  指數(shù)與指數(shù)冪的運(yùn)算、

  指數(shù)函數(shù)及其性質(zhì)

  掌握冪的運(yùn)算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。難點(diǎn):理解概念

  第5周

  9.28~10.4

  (9月月考國慶放假)

  第6周

  10.5~10.11

  對(duì)數(shù)與對(duì)數(shù)運(yùn)算、

  對(duì)數(shù)函數(shù)及其性質(zhì)

  理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式;探索并了解對(duì)數(shù)函數(shù)單調(diào)性與特殊點(diǎn);知道指數(shù)函數(shù)與對(duì)數(shù)函數(shù)互為反函數(shù)

  第7周

  10.12~10.18

  冪函數(shù)

  從五個(gè)具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認(rèn)識(shí)冪函數(shù)的一些性質(zhì)

  第8周

  10.19~10.25

  方程的根與函數(shù)零點(diǎn),

  二分法求方程近似解,

  能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;

  第9周

  10.26~11.1

  幾類不同增長的模型、函數(shù)模型應(yīng)用舉例

  對(duì)比指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長等不同函數(shù)類型增長的含義

  第10周

  11.2~11.8

  期中復(fù)習(xí)及考試

  分章歸納復(fù)習(xí)+1套模擬測(cè)試

  第11周

  11.9~11.15

  任意角和弧度制

  任意角的三角函數(shù)

  了解任意角的概念和弧度制,能進(jìn)行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義

  第12周

  11.16~11.22

  三角函數(shù)的誘導(dǎo)公式

  三角函數(shù)的圖像和性質(zhì)

  借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性

  第13周

  11.23~11.29

  函數(shù)y=Asin(wx+q)的圖像

  借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì),借助計(jì)算機(jī)畫出圖像觀察A w q對(duì)函數(shù)圖像變化的影響

  第14周

  11.30~12.6

  三角函數(shù)模型的簡單應(yīng)用 單元考試

  會(huì)用三角函數(shù)解決一些簡單實(shí)際問題,體會(huì)三角函數(shù)是描述周期變化的重要函數(shù)模型

  第15周

  12.7~12.13

  平面向量的實(shí)際背景及基本概念,平面向量的線性運(yùn)算

  掌握向量加、減法的運(yùn)算,理解其幾何意義掌握數(shù)乘運(yùn)算及兩個(gè)向量共線的含義了解平面向量的基本定理掌握正交分解及坐標(biāo)表示、會(huì)用坐標(biāo)表示平面向量的加減及數(shù)乘運(yùn)算

  第16周

  12.14~12.20

  平面向量的基本定理及坐標(biāo)表示,平面向量的數(shù)量積,

  理解用坐標(biāo)表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會(huì)平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面,向量數(shù)量積的運(yùn)算、求夾角、及垂直關(guān)系

  第17周

  12.21~12.27

  平面向量應(yīng)用舉例,

  小結(jié)

  用向量方法解決莫些簡單的平面幾何問題、力學(xué)問題與其他一些實(shí)際問題的過程,體會(huì)向量是一種幾何問題,物理問題的工具,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力

  第18周

  12.28~1.3

  兩角和與差點(diǎn)正弦、余弦和正切公式

  能以兩角差點(diǎn)余弦公式導(dǎo)出兩角和與差點(diǎn)正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系

  第19周

  1.4~1.10

  簡單的三角恒等變換

  期末復(fù)習(xí)

【高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃11-30

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃9篇01-11

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃(8篇)02-11

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃11篇02-01

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃(11篇)02-01

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃5篇11-21

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃3篇11-12

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃7篇11-10

高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃10篇12-01