- 相關(guān)推薦
如何培養(yǎng)學(xué)生的模型思想
如何培養(yǎng)學(xué)生的模型思想近些年來,隨著人們對教師在這個日益進步的世界中的作用的關(guān)注,人們自覺或不自覺地從各個角度,提出了一些關(guān)于教師發(fā)展的新思路。比如如何建立和培養(yǎng)學(xué)生的數(shù)學(xué)模型思想,這些新概念對于我們教師必須第一時間領(lǐng)略并引導(dǎo)學(xué)生朝這個方向培養(yǎng)和發(fā)展。因此, 在教學(xué)中如何有效幫助學(xué)生建構(gòu)數(shù)學(xué)模型, 加強對知識的內(nèi)在體驗和感知, 進而發(fā)展學(xué)生的模型思想, 成為了我們課堂教學(xué)研究的關(guān)鍵。下面僅就如何培養(yǎng)學(xué)生的建模思想談一些做法和感受。
教學(xué)設(shè)計是建構(gòu)數(shù)學(xué)模型的紐帶
學(xué)生在課堂中能夠建立模型思想要看老師對這堂課怎樣設(shè)計。例如在《一億有多大》中我先讓學(xué)生觀看課件,一億個人有多少,然后再讓他們感受一億張紙有多厚,先找100張疊在一起,用尺子量有多厚,再計算1000張,10000張以此類推。想象一下1億頁這樣的紙大約有多厚?放手讓學(xué)生自主活動,注重數(shù)學(xué)思想方法的滲透,逐步培養(yǎng)學(xué)生的數(shù)感建立他們的模型思想。因此,教學(xué)設(shè)計是建構(gòu)數(shù)學(xué)模型的紐帶。
二、數(shù)學(xué)問題是建構(gòu)數(shù)學(xué)模型的關(guān)鍵
在我們小學(xué)階段數(shù)學(xué)知識點環(huán)環(huán)緊扣,在教學(xué)中我們不能單一的講授一點,比如已知什么條件,求什么問題。問題情景單一,條件不多不少,解題目標(biāo)清楚,教師掌握一種解答就可以指導(dǎo)學(xué)生。而實際生活中卻并非如此簡單,問題是什么需要自己去界定,有用的條件是哪些需要自己尋找或定向挖掘,目標(biāo)也需要自己選擇和把握。因此我們需要在數(shù)學(xué)課內(nèi)或課外活動中設(shè)計一些需要對信息的選擇、分析、加工、處理的問題,使學(xué)生建立能從現(xiàn)實生活中主動應(yīng)用自己所學(xué)的數(shù)學(xué)知識去概括、抽象、解決問題的意識。
如在教學(xué)“百分數(shù)和分數(shù)的問題”時,給出 :“50比30多多少?”“50比30多幾分之幾?”“50比30多百分之幾”“30比50少多少?”“30比50少幾分之幾”“30比50少百分之幾”運用了這種的教學(xué)模型,能較系統(tǒng)的,有條理的整理出分析方法和解決問題的方法,使學(xué)生能較好的掌握關(guān)于“誰比誰多(少)幾分之幾”“誰比誰多(少)百分之幾”問題的運用。
三、圖形是建構(gòu)數(shù)學(xué)模型思想的手段
好多的數(shù)學(xué)問題,需要用圖形來設(shè)計解決,建立空間觀念例如在關(guān)于路程速度的教學(xué)上就需要畫簡易的線段圖,還有百分數(shù)、分數(shù)應(yīng)用題上也要借助圖形來幫助學(xué)生理解和掌握,建立空間觀念,從而建構(gòu)數(shù)學(xué)模型思想。
四、多元化的思維方式是建構(gòu)數(shù)學(xué)模型思想的方法
數(shù)學(xué)模型不僅反映了數(shù)學(xué)思維的過程和數(shù)量之間的結(jié)構(gòu)關(guān)系, 它同時也是一種更為高級和高效的數(shù)學(xué)思維的反映。所以這些多元的思維方法, 同樣也是建構(gòu)數(shù)學(xué)模型的重要方法。
以四年級的“烙餅問題”為例,“每次只能烙兩張餅,兩面都要烙,每面3分鐘,烙3張餅怎樣才能盡快吃上餅?”學(xué)生猜想(1)烙1張要6分鐘,烙3張要18分鐘。(2)可以先烙2張用6分鐘,再烙1張用6分鐘,只用12分鐘。(3)歸納最佳方案先放兩塊餅烙3分鐘,將一塊餅翻面,取出另一塊,同時放入第三塊餅,再烙3分鐘。最后取出烙好的那塊餅,再放進先取出的那塊餅,同時將鍋里的另一塊餅翻面,再烙3分鐘。共9分鐘!袄4張餅?zāi)兀?張餅?zāi)兀?張餅?zāi)?”從上述例子中我們把學(xué)生的好奇心轉(zhuǎn)變?yōu)榍笾,促進學(xué)生思維的發(fā)展,并且發(fā)現(xiàn)“學(xué)生猜想作為一種帶有一定直覺性的比較高級的思維方式, 對于探索或發(fā)現(xiàn)性學(xué)習(xí)來說, 它既是一種重要的思維方法, 同時也是一種建構(gòu)數(shù)學(xué)模型的重要手段”.
總之,培養(yǎng)和建構(gòu)數(shù)學(xué)模型思想是個漸進的過程。需要我們在教學(xué)中從點點滴滴入手去培養(yǎng)和把握。
【如何培養(yǎng)學(xué)生的模型思想】相關(guān)文章:
《思想品德》教學(xué)中如何培養(yǎng)學(xué)生創(chuàng)新精神08-26
思想品德課程如何培養(yǎng)學(xué)生的創(chuàng)新能力08-21
數(shù)學(xué)模型思想論文08-08
思想品德課教學(xué)如何培養(yǎng)學(xué)生的自主學(xué)習(xí)08-13
思想政治課堂上如何培養(yǎng)學(xué)生的創(chuàng)新能力08-18
如何培養(yǎng)學(xué)生的語感08-24
淺談高中物理模型教學(xué)及學(xué)生建模能力的培養(yǎng)08-18