- 相關推薦
八年級上冊數學與三角形有關的角的教案
作為一位不辭辛勞的人民教師,常常需要準備教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。優(yōu)秀的教案都具備一些什么特點呢?以下是小編精心整理的八年級上冊數學與三角形有關的角的教案,僅供參考,大家一起來看看吧。
八年級上冊數學與三角形有關的角的教案1
[學習目標]
1.理解三角形內角和定理的證明方法;
2.掌握三角形內角和定理及三角形的外角性質;
3.能夠運用三角形內角和定理及三角形的外角性質進行相關的計算,證明問題.
[要點梳理]要點一、三角形的內角
1.三角形內角和定理:三角形的內角和為 180°.
要點詮釋:應用三角形內角和定理可以解決以下三類問題:
、 在三角形中已知任意兩個角的度數可以求出第三個角的度數;
、 己知三角形三個內角的關系,可以求出其內角的度數;
、 求一個三角形中各角之間的關系.
2.直角三角形:如果一個三角形是直角三角形,那么這個三角形有兩個角互余。反過來,有兩個角互余的三角形是直角三角形。
要點詮釋:
如果直角三角形中有一個銳角為45°,那么這個直角三角形的另一個銳角也是45°,且此直角 三角形是等腰直角三角形。
要點二、三角形的外角
1.定義:三角形的一邊與另一邊的延長線組成的角叫做三角形的外角如圖,∠ACD是△ABC的一個外角
要點詮釋:
(1) 外角的特征:
、 頂點在三角形的一個頂點上:
② 一條邊是三角形的一邊:
、 另一條邊是三角形某條邊的延長線.
(2) 三角形每個頂點處有兩個外角,它們是對頂角。所以三角形共有六個外角,通常每個頂 點處取一個外角,因此,我們常說三角形有三個外角。
2.性質:
(1) 三角形的一個外角等于與它不相鄰的兩個內角的和
(2) 三角形的一個外角大于任意一個與它不相鄰的內角要點詮釋:三角形內角和定理和三角形外角的性質是求角度及與角有關的`推理論證明經常使用的理論依據。另外,在證角的不等關系時也常想到外角的性質。
3.三角形的外角和:三角形的外角和等于360°
要點詮釋:
因為三角形的每個外角與它相鄰的內角是鄰補角,由三角形的內角和是180°, 可推出三角形的三個外角和是360°.
八年級上冊數學與三角形有關的角的教案2
一、創(chuàng)設情景,明確目標
多媒體展示:內角三兄弟之爭
在一個直角三角形里住著三個內角,平時,它們三兄弟非常團結.可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起來了……”“為什么?”老二很納悶.同學們,你們知道其中的道理嗎?
二、自主學習,指向目標
學習至此:請完成《學生用書》相應部分.
三、合作探究,達成目標
三角形的內角和
活動一:見教材P11“探究”.
展示點評:從探究的操作中,你能發(fā)現(xiàn)證明的思路嗎?圖中的直線L與△ABC的邊BC有什么關系?你能想出證明“三角形內角和的方法”嗎?證明命題的步驟是什么?證明三角形的內角和定理.
小組討論:有沒有不同的.證明方法?
反思小結:證明是由題設出發(fā),經過一步步的推理,最后推出結論正確的過程.三角形三個內角的和等于180°.
針對訓練:見《學生用書》相應部分
三角形內角和定理的應用
活動二:見教材P12例1
展示點評:題中所求的角是哪個三角形的一個內角嗎?你能想出幾種解法?
小組討論:三角形的內角和在解題時,如何靈活應用?
反思小結:當三角形中已知兩角的讀數時,可直接用內角和定理求第三個內角;當三角形中未直接給出兩內角的度數時,可根據它們之間的關系列方程解決.
針對訓練:見《學生用書》相應部分
四、總結梳理,內化目標
1.本節(jié)學習的數學知識是:三角形的內角和是180°.
2.三角形內角和定理的證明思路是什么?
3.數學思想是轉化、數形結合.
《三角形綜合應用》精講精練
1. 現(xiàn)有3 cm,4 cm,7 cm,9 cm長的四根木棒,任取其中三根組成一個三角形,那么可以組成的三角形的個數是( )
A.1個 B.2個 C.3個 D.4個
2. 如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依次為2,3,4,6,且相鄰兩木條的夾角均可調整.若調整木條的夾角時不破壞此木框,則任兩螺絲之間的距離最大值是( )
A.5 B.6 C.7 D.10
3.下列五種說法:①三角形的三個內角中至少有兩個銳角;
、谌切蔚娜齻內角中至少有一個鈍角;③一個三角形中,至少有一個角不小于60°;④鈍角三角形中,任意兩個內角的和必大于90°;⑤直角三角形中兩銳角互余.其中正確的說法有________(填序號).
《11.2與三角形有關的角》同步測試
4.(1)如圖①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,∠ACD與∠B有什么關系?為什么?
(2)如圖②,在Rt△ABC中,∠C=90°,D,E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀.為什么?
(3)如圖③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,點C,B,E在同一直線上,∠A與∠D有什么關系?為什么?
八年級上冊數學與三角形有關的角的教案3
一、創(chuàng)設情景,明確目標
投影:金字塔,斜拉大橋,塔吊,自行車等,讓學生感受生活中處處有三角形的身影,我們研究的“三角形”這個課題來源于實際生活之中。
請說一說你已經學習了三角形的哪些知識?
二、自主學習,指向目標
1、自學教材第1至3頁。
2、學習至此:請完成《學生用書》相應部分。
三、合作探究,達成目標
三角形的概念表示方法及分類
活動一:閱讀教材第1至2頁內容,并思考以下問題:
(1)具有什么特征的圖形叫三角形?(不在同一直線上的三條線段,首尾順次相接所組成的圖形)
。2)三角形有幾條邊?有幾個內角?有幾個頂點?(3,3,3)
(3)三角形ABC用符號如何表示?三角形ABC的邊AB、AC和BC怎樣用小寫字母分別表示?(a,b,c)
(4)三角形按邊分可以分成幾類?按角分呢?
展示點評:學生結合圖形分別回答,師生共同點評。
小組討論:三角形的概念,如何用符號表示及分類?
反思小結:三角形的圖形特征,有三條邊,三個內角,三個頂點,邊可以用兩個大寫字母表示,也可以用一個小寫字母表示。
針對訓練:見《學生用書》相應部分。
三角形的三邊關系
活動二:畫出一個△ABC,假設有一只小蟲要從B出發(fā),沿三角形的邊爬到C,它有幾種路線可以選擇?各條路線的長有什么數量關系?請說明你結論的正確性。
展示點評:(1)小蟲從B出發(fā)沿三角形的邊爬到C如下幾條線段。
a、從xxBxx鯻xCxx
b、從xxBxx鯻xAxx鯻xCxx
從B沿邊BC到C的路線長為xxBCxx。
從B沿邊BA到A,從A沿C到C的路線長為xxAB+ACxx。
經過測量可以說xxAB+ACxx>xxBCxx,可以說這兩條路線的長是xx不相等xx的
小組討論:在同一個三角形中,任意兩邊之和與第三邊有什么關系?任意兩邊之差與第三邊有什么關系?三角形的三邊有怎么樣的不等關系?
反思小結:三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。
針對訓練:見《學生用書》相應部分
三角形有關知識的運用
活動三:見教材P3例題
小組討論:等腰三角形中有幾個不同的邊長?第(2)問中的長4 cm沒有明確是腰還是底時應怎么處理?
展示點評:等腰三角形的底和腰的長度,不確定時,應分情況予以討論。
反思小結:當題目中的條件不明確時要分類討論。所有的三角形必須要滿足三邊關系定理。
針對訓練:見《學生用書》相應部分
四、總結梳理,內化目標
1、概念:三角形,內角,邊,頂點
2、符號語言。
3、三邊關系。
4、角形的分類。
五、達標檢測,反思目標
1、現(xiàn)有兩根木棒,它們的長度分別為20 cm和30 cm,若不改變木棒的長度,要釘成一個三角形木架,應在下列四根木棒中選。˙)
A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒
2、已知等腰三角形的`兩邊長分別為3和6,則它的周長為(C)
A、9 B、12 C、15 D、12或15
3、已知三角形的三邊長為連續(xù)整數,且周長為12 cm,則它的最短邊長為(B)
A、2 cm B、3 cm C、4 cm D、5 cm
4、若五條線段的長分別是1 cm,2 cm,3 cm,4 cm,5 cm,則以其中三條線段為邊可構成xx3xx個三角形。若等腰三角形的兩邊長分別為3和7,則它的周長為xx17xx;若等腰三角形的兩邊長分別是3和4,則它的周長為xx10或11xx。
5、如果以5 cm為等腰三角形的一邊,另一邊為10 cm,則它的周長為xx25xcmxx。
6、工人師傅用35 cm長的鐵絲圍成一個等腰三角形鐵架。
。1)若腰長是底邊長的3倍,那么各邊的長分別是多少?
(2)能圍成有一邊長為7 cm的等腰三角形嗎?為什么?
《11。1。1三角形的邊》同步練習題(含答案)
2、四條線段的長度分別為4,6,8,10,則可以組成三角形的個數為()
A、4 B、3 C、2 D、1
答案B選出三條線段的所有組合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能組成三角形。故選B。
3、已知等腰三角形的一邊長為3 cm,且它的周長為12 cm,則它的底邊長為()
A、3 cm B6 、cm C、9 cm D、3 cm或6 cm
答案A當3 cm是等腰三角形的腰長時,底邊長=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能構成三角形,∴此種情況不存在;當3 cm是等腰三角形的底邊長時,腰長= =4。5(cm),此時能組成三角形。∴底邊長為3 cm,故選A。
《11.1與三角形有關的線段》同步測試(含答案解析)
2、一個三角形3條邊長分別為x cm、(x+1)cm、(x+2)cm,它的周長不超過39 cm,則x的取值范圍是xx。
3、一個等腰三角形的周長為9,三條邊長都為整數,則等腰三角形的腰長為xxx。
4、已知a,b,c是三角形的三邊長。
(1)化簡:|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|;
。2)在(1)的條件下,若a,b,c滿足a+b=11,b+c=9,a+c=10,求這個式子的值。
【八年級上冊數學與三角形的角的教案】相關文章:
數學全等三角形教案12-30
數學全等三角形教案03-20
小學數學《三角形》教案07-17
三角形數學教案06-04
數學全等三角形教案06-20
三角形分類數學教案02-02
三角形的邊數學教案02-22
數學全等三角形教案(必備)06-30
“三角形的認識”數學教案02-02
三角形的內角數學教案02-08