丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)下冊(cè)教案

八年級(jí)數(shù)學(xué)下冊(cè)教案

時(shí)間:2024-05-19 08:48:21 數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)下冊(cè)教案【熱門】

  作為一位優(yōu)秀的人民教師,往往需要進(jìn)行教案編寫工作,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么你有了解過(guò)教案嗎?下面是小編為大家收集的八年級(jí)數(shù)學(xué)下冊(cè)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

八年級(jí)數(shù)學(xué)下冊(cè)教案【熱門】

八年級(jí)數(shù)學(xué)下冊(cè)教案1

  一、學(xué)情分析

  學(xué)生在學(xué)習(xí)直角三角形全等判定定理“HL”之前,已經(jīng)掌握了一般三角形全等的判定方法,在本章的前一階段的學(xué)習(xí)過(guò)程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個(gè)定理的證明以及利用這個(gè)定理解決相關(guān)問(wèn)題還是一個(gè)較高的要求。

  二、教學(xué)任務(wù)分析

  本節(jié)課是三角形全等的最后一部分內(nèi)容,也是很重要的一部分內(nèi)容,凸顯直角三角形的特殊性質(zhì)。在探索證明直角三角形全等判定定理“HL”的同時(shí),進(jìn)一步鞏固命題的相關(guān)知識(shí)也是本節(jié)課的任務(wù)之一。因此本節(jié)課的教學(xué)目標(biāo)定位為:

  1.知識(shí)目標(biāo):

 、倌軌蜃C明直角三角形全等的“HL”的判定定理,進(jìn)一步理解證明的必要性 ②利用“HL’’定理解決實(shí)際問(wèn)題

  2.能力目標(biāo):

  ①進(jìn)一步掌握推理證明的方法,發(fā)展演繹推理能力

  三、教學(xué)過(guò)程分析

  本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)提問(wèn);第二環(huán)節(jié):引入新課;第三環(huán)節(jié):做一做;第四環(huán)節(jié):議一議;第五環(huán)節(jié):課時(shí)小結(jié);第六環(huán)節(jié):課后作業(yè)。

  1:復(fù)習(xí)提問(wèn)

  1.判斷兩個(gè)三角形全等的方法有哪幾種?

  2.已知一條邊和斜邊,求作一個(gè)直角三角形。想一想,怎么畫?同學(xué)們相互交流。

  3、有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?如果其中一個(gè)角是直角呢?請(qǐng)證明你的結(jié)論。

  我們?cè)鴱恼奂埖倪^(guò)程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運(yùn)用公理,證明三角形全等,從而得出“等邊對(duì)等角”。那么我們能否通

  1 / 5

  過(guò)作等腰三角形底邊的高來(lái)證明“等邊對(duì)等角”.

  要求學(xué)生完成,一位學(xué)生的過(guò)程如下:

  已知:在△ABC中, AB=AC.

  求證:∠B=∠C.

  證明:過(guò)A作AD⊥BC,垂足為C,∴∠ADB=∠ADC=90°

  又∵AB=AC,AD=AD,∴△ABD≌△ACD.

  ∴∠B=∠C(全等三角形的對(duì)應(yīng)角相等)

  在實(shí)際的教學(xué)過(guò)程中,有學(xué)生對(duì)上述證明方法產(chǎn)生了質(zhì)疑。質(zhì)疑點(diǎn)在于“在證明△ABD≌△ACD時(shí),用了“兩邊及其中一邊的對(duì)角對(duì)相等的兩個(gè)三角形全等”.而我們?cè)谇懊鎸W(xué)習(xí)全等的時(shí)候知道,兩個(gè)三角形,如果有兩邊及其一邊的對(duì)角相等,這兩個(gè)三角形是不一定全等的.可以畫圖說(shuō)明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)” .

  也有學(xué)生認(rèn)同上述的證明。

  教師順?biāo)浦,詢?wèn)能否證明:“在兩個(gè)直角三角形中,直角所對(duì)的邊即斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.”,從而引入新課。

  2:引入新課

  (1).“HL”定理.由師生共析完成

  已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求證:Rt△ABC≌Rt△A′B′C′

  證明:在Rt△ABC中,AC=AB一BC(勾股定理).

  又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股

  定理).

  AB=A'B',BC=B'C',AC=A'C'.

  ∴Rt△ABC≌Rt△A'B'C' (SSS).

  教師用多媒體演示:

  定理 斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.

  這一定理可以簡(jiǎn)單地用“斜邊、直角邊”或“HL”表示.

  2 / 5

  22A'B'

  從而肯定了第一位同學(xué)通過(guò)作底邊的高證明兩個(gè)三角形

  全等,從而得到“等邊對(duì)等角”的證法是正確的..

  練習(xí):判斷下列命題的真假,并說(shuō)明理由:

  (1)兩個(gè)銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;

  (2)斜邊及一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;

  (3)兩條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等;

  (4)一條直角邊和另一條直角邊上的中線對(duì)應(yīng)相等的兩個(gè)直角三角形全等. 對(duì)于(1)、(2)、(3)一般可順利通過(guò),這里教師將講解的重心放在了問(wèn)題

 。4),學(xué)生感覺(jué)是真命題,一時(shí)有無(wú)法直接利用已知的定理支持,教師引導(dǎo)學(xué)生證明.

  已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D' (如圖).

  求證:Rt△ABC≌Rt△A'B'C'.

  證明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).

  CD=C'D'.

  又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.

  ∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).

  通過(guò)上述師生共同活動(dòng),學(xué)生板書推理過(guò)程之后可發(fā)動(dòng)學(xué)生去糾錯(cuò),教師最后再總結(jié)。

  3:做一做

  問(wèn)題 你能用三角尺平分一個(gè)已知角嗎? 請(qǐng)同學(xué)們用手中的三角尺操作完成,并在小組內(nèi)交流,用自己的語(yǔ)言清楚表達(dá)自己的想法.

 。ㄔO(shè)計(jì)做一做的目的為了讓學(xué)生體會(huì)數(shù)學(xué)結(jié)論在實(shí)際中的應(yīng)用,教學(xué)中就要求學(xué)生能用數(shù)學(xué)的語(yǔ)言清楚地表達(dá)自己的想法,并能按要求將推理證明過(guò)程寫出來(lái)。)

  4:議一議

  3 / 5

  BEADCDA'D'BB'

八年級(jí)數(shù)學(xué)下冊(cè)教案2

  1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?

  2.學(xué)生觀察下面的例子,并計(jì)算:

  由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

  類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

 。ā0,b0)

  使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過(guò)程.

  類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,

  請(qǐng)學(xué)生們思考為什么b的取值范圍變小了?

  與學(xué)生一起寫清解題過(guò)程,提醒他們被開(kāi)方式一定要開(kāi)盡.

  對(duì)比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法

  增強(qiáng)學(xué)生的自信心,并從一開(kāi)始就使他們參與到推導(dǎo)過(guò)程中來(lái).

  對(duì)學(xué)生進(jìn)一步強(qiáng)化被開(kāi)方數(shù)的取值范圍,以及分母不能為零.

  強(qiáng)化學(xué)生的`解題格式一定要標(biāo)準(zhǔn).

  教學(xué)過(guò)程設(shè)計(jì)

  問(wèn)題與情境師生行為設(shè)計(jì)意圖

  活動(dòng)二自我檢測(cè)

  活動(dòng)三挑戰(zhàn)逆向思維

  把反過(guò)來(lái),就得到

 。ā0,b0)

  利用它就可以進(jìn)行二次根式的化簡(jiǎn).

  例2化簡(jiǎn):

 。1)

 。2)(b≥0).

  解:(1)(2)練習(xí)2化簡(jiǎn):

 。1)(2)活動(dòng)四談?wù)勀愕氖斋@

  1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

  2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).

  找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

  找學(xué)生口述解題過(guò)程,教師將過(guò)程寫在黑板上.

  請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的學(xué)習(xí)情況.

  請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

  為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.

  此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.

  讓學(xué)困生在自己做題時(shí)有一個(gè)參照.

  充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問(wèn)題解決.

八年級(jí)數(shù)學(xué)下冊(cè)教案3

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點(diǎn)及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

  教學(xué)重點(diǎn):

  1、 一次函數(shù)解析式特點(diǎn)

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點(diǎn):

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

  教學(xué)過(guò)程:

 、瘢岢鰡(wèn)題,創(chuàng)設(shè)情境

  問(wèn)題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

  分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說(shuō)明 找出問(wèn)題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

  問(wèn)題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開(kāi)始的月份之間的函數(shù)關(guān)系式.

  分析 我們?cè)O(shè)從現(xiàn)在開(kāi)始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問(wèn)題3 以上問(wèn)題1和問(wèn)題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

 、颍畬(dǎo)入新課

  上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

  (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

  (2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);

  (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

  (4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

 。5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

  (6)圓的面積y(厘米2)與它的.半徑x(厘米)之間的關(guān)系;

  (7)一棵樹現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

  (2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

 。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

 。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

 。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

  (1)寫出y與x之間的函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時(shí),y的值.

  解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

  又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過(guò)B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫(kù)有一沒(méi)儲(chǔ)油的儲(chǔ)油罐,在開(kāi)始的8分鐘時(shí)間內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

  分析 因?yàn)樵谥淮蜷_(kāi)進(jìn)油管的8分鐘內(nèi)、后又打開(kāi)進(jìn)油管和出油管的16分鐘和最后的只開(kāi)出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

 、螅S堂練習(xí)

  根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不

  超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

 、簦n時(shí)小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡(jiǎn)單信息,寫出一次函數(shù)的表達(dá)式。

 、酰n后作業(yè)

  1、已知y-3與x成正比例,且x=2時(shí),y=7

  (1)寫出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計(jì)算y=-4時(shí)x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

  3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹約有多高.

  5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級(jí)數(shù)學(xué)下冊(cè)教案4

  一、教學(xué)目標(biāo)

  1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。

  2.使學(xué)生理解和掌握分式和減法法則,并會(huì)應(yīng)用法則進(jìn)行分式加減的運(yùn)算。

  3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。

  4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  1.重點(diǎn):分式的加減運(yùn)算。

  2.難點(diǎn):異分母的分式加減法運(yùn)算。

  三、教學(xué)方法

  啟發(fā)式、分組討論。

  四、教學(xué)手段

  幻燈片。

  五、教學(xué)過(guò)程

 。ㄒ唬┮

  1.如何計(jì)算:2.如何計(jì)算:3.若分母不同如何計(jì)算?如:

 。ǘ┬抡n

  1.類比分?jǐn)?shù)的通分得到分式的通分:把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。

  2.通分的依據(jù):分式的基本性質(zhì)。

  3.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的.所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

  例1通分:

 。1)解:∵最簡(jiǎn)公分母是,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù)。

 。2)解:

  例2通分:

 。1)解:∵最簡(jiǎn)公分母的是2x(x+1)(x—1),

  小結(jié):當(dāng)分母是多項(xiàng)式時(shí),應(yīng)先分解因式。

  (2)解:將分母分解因式:∴最簡(jiǎn)公分母為2(x+2)(x—2),

  練習(xí):教材P,79中1、2、3。

  (三)課堂小結(jié)

  1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開(kāi)而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

八年級(jí)數(shù)學(xué)下冊(cè)教案5

  例題講解

  引入問(wèn)題:有甲乙兩種客車,甲種客車每車能拉30人,乙種客車每車能拉40人,現(xiàn)在有400人要乘車,

  1、你有哪些乘車方案?

  2、只租8輛車,能否一次把客人都運(yùn)送走?

  問(wèn)題2;怎樣租車

  某學(xué)校計(jì)劃在總費(fèi)用2300元的限額內(nèi),利用汽車送234名學(xué)生和6名教師集體外出活動(dòng),每輛汽車上至少有1名教師,F(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表:

  甲種客車乙種客車

  載客量(單位:人/輛)4530

  租金(單位:元/輛)400280

 。1)共需租多少輛汽車?

 。2)給出最節(jié)省費(fèi)用的租車方案。

  分析;

  (1)要保證240名師生有車坐

 。2)要使每輛汽車上至少要有1名教師

  根據(jù)(1)可知,汽車總數(shù)不能小于____;根據(jù)(2)可知,汽車總數(shù)不能大于____。綜合起來(lái)可知汽車總數(shù)為_____。

  設(shè)租用x輛甲種客車,則租車費(fèi)用y(單位:元)是x的'函數(shù),即

  y=400x+280(6-x)

  化簡(jiǎn)為:y=120x+1680

  討論:

  根據(jù)問(wèn)題中的條件,自變量x的取值應(yīng)有幾種可能?

  為使240名師生有車坐,x不能小于____;為使租車費(fèi)用不超過(guò)2300元,X不能超過(guò)____。綜合起來(lái)可知x的取值為____。

  在考慮上述問(wèn)題的基礎(chǔ)上,你能得出幾種不同的租車方案?為節(jié)省費(fèi)用應(yīng)選擇其中的哪種方案?試說(shuō)明理由。

  方案一:

  4兩甲種客車,2兩乙種客車

  y1=120×4+1680=2160

  方案二:

  5兩甲種客車,1輛乙種客車

八年級(jí)數(shù)學(xué)下冊(cè)教案6

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?

  通過(guò)討論得到矩形的判定方法.

  矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.

  (指出:判定一個(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)

  二、例習(xí)題分析

  例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否正確?為什么?

 。1)有一個(gè)角是直角的四邊形是矩形;(×)

 。2)有四個(gè)角是直角的四邊形是矩形;(√)

  (3)四個(gè)角都相等的四邊形是矩形;(√)

 。4)對(duì)角線相等的四邊形是矩形;(×)

  (5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)

 。6)對(duì)角線互相平分且相等的四邊形是矩形;(√)

 。7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;(×)

 。8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)

 。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)

  指出:

 。╨)所給四邊形添加的`條件不滿足三個(gè)的肯定不是矩形;

  (2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2(補(bǔ)充)已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個(gè)平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來(lái)證明

八年級(jí)數(shù)學(xué)下冊(cè)教案7

  教學(xué)目標(biāo):

  1、進(jìn)一步熟練運(yùn)用平行四邊形、矩形、菱形、正方形的性質(zhì)和判定方法解決有關(guān)問(wèn)題,清楚平行四邊形、特殊平行四邊形的特征以及彼此之間的關(guān)系。

  2、能利用它們的性質(zhì)和判定進(jìn)行推理和計(jì)算。

  3、使學(xué)生明確知識(shí)體系,提高空間想象能力,掌握基本的推理能力。

  教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn):掌握特殊平行四邊形性質(zhì)與判定。

  難點(diǎn):能用特殊平行四邊形的判定定理和性質(zhì)定理進(jìn)行幾何證明和計(jì)算。

  教學(xué)過(guò)程:

  一、梳理知識(shí):

  1.特殊平行四邊形的性質(zhì).

  1)如圖所示:在矩形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=3cm,AC=5cm

  則BC=_____cm,△BOC的周長(zhǎng)=_____cm

  2)如圖所示:在菱形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=5cm,AC=6cm,

  則你能求出哪些線段的.長(zhǎng)度?

  3)如圖所示:在正方形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知OA=3cm,

  則AB=_____cm,△BOC的周長(zhǎng)=_______cm.

  小結(jié):特殊平行四邊形的性質(zhì)(PPT呈現(xiàn))

  2.特殊平行四邊形的判定.

  要使平行四邊形ABCD成為矩形,需要增加的條件________.

  要使平行四邊形ABCD成為菱形,需要增加的條件________.

  要使矩形ABCD成為正方形,需要增加的條件________.

  要使菱形ABCD成為正方形,需要增加的條件________.

  小結(jié):特殊平行四邊形的判定(PPT呈現(xiàn))

  二、深化提高:

  1.已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,

  (1)求證:四邊形ADCE為矩形;

  (2)當(dāng)△ABC滿足什么條件時(shí),

  四邊形ADCE是一個(gè)正方形?并給出證明.

  2.如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,

  過(guò)點(diǎn)D作DP∥OC,過(guò)C點(diǎn)作CP∥DO,交DP于點(diǎn)P,

  試判斷四邊形CODP的形狀.

  變式1:如果題目中的矩形變?yōu)榱庑危?圖一)結(jié)論應(yīng)變?yōu)槭裁矗?/p>

  變式2:如果題目中的矩形變?yōu)檎叫危?圖二)結(jié)論又應(yīng)變?yōu)槭裁矗?/p>

  3.如圖,在中,是邊的中點(diǎn),分別是及其延長(zhǎng)線上的點(diǎn),.

 。1)求證:.

  (2)請(qǐng)連結(jié),試判斷四邊形的形狀,并說(shuō)明理由.

 。3)若四邊形是菱形,判斷的形狀。

  三、拓展提高

  1.如圖,以△ABC的三邊為邊在BC的同側(cè)分別作三個(gè)等邊三角形,即△ABD、

  △BCE、△ACF,

 。1)四邊形ADEF是什么四邊形?并說(shuō)明理由

  (2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?

 。3)當(dāng)△ABC滿足什么條件時(shí),以A、D、E、F為頂點(diǎn)的四邊形不存在.

  2.如圖,已知⊿ABC是等腰三角形,頂角∠BAC=,(<60°)D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.

  (1)求證:BE=CD;

  (2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明,

  四、課堂小結(jié)

  五、作業(yè)

  1.如圖,在正方形ABCD中,P為對(duì)角線BD上一點(diǎn),

  PE⊥BC,垂足為E,PF⊥CD,垂足為F。

  求證:EF=AP

  2.如圖,正方形ABCD中,E是對(duì)角線BD上的點(diǎn),且BE=AB,

  EF⊥BD,交CD于點(diǎn)F,DE=2.5cm,求CF的長(zhǎng)。

  3.如圖,四邊形ABCD是菱形,對(duì)角線AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的長(zhǎng)。

八年級(jí)數(shù)學(xué)下冊(cè)教案8

  教學(xué)目標(biāo):

  學(xué)會(huì)可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解、掌握解分式方程的一般步驟。

  教學(xué)重點(diǎn):

  去分母法解可化為一元一次方程或一元二次方程的分式方程、驗(yàn)根的'方法、

  教學(xué)難點(diǎn):

  解分式方程的一般步驟。

  教學(xué)過(guò)程:

  復(fù)習(xí)引入:

  1、什么叫分式方程?

  2、解分式方程的基本思想:

  分式方程整式方程

  3、解方程(學(xué)生板演)

  講授新課:

  1、由上述學(xué)生的板演歸納出解分式方程的一般步驟

 。1)去分母:在方程的兩邊都乘以最簡(jiǎn)公分母,化為整式方程;

  (2)解這個(gè)整式方程;

 。3)檢驗(yàn):將所得的解代入原方程的最簡(jiǎn)公分母,若最簡(jiǎn)公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、

  2、范例講解

 。▽W(xué)生嘗試練習(xí)后,教師講評(píng))

  例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):

  1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)

  2、解分式方程的步驟、

  鞏固練習(xí):P1471t,2t、

  課堂小結(jié):解分式方程的一般步驟

  布置作業(yè):見(jiàn)作業(yè)本。

八年級(jí)數(shù)學(xué)下冊(cè)教案9

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;

  3.在本節(jié)課的教學(xué)過(guò)程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問(wèn)題、解決問(wèn)題.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點(diǎn):不等式的解集的概念.

  課堂教學(xué)過(guò)程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  (3)x與3的和小于6; (4)x的小于2.

  (3)當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?

  -4,3.5,-2.5,3,0,2.9.

  ((2)、(3)兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問(wèn)題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒(méi)有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過(guò)觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡(jiǎn)稱不等式x+3<6的解集,記作x<3.

  最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱為這個(gè)不等式的解集.

  不等式一般有無(wú)限多個(gè)解.

  求不等式的解集的過(guò)程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集,一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))

  記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含x=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“!边是用實(shí)心圓點(diǎn)“.”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (1)x≤-5; (2)x≥0; (3)x>-1;

  (4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.

  解(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視遇到問(wèn)題,及時(shí)糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請(qǐng)四名學(xué)生生回答,教師板書,最后,請(qǐng)學(xué)生在筆記本上畫數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)

  解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

  (本題從另一例面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說(shuō)明問(wèn)題的優(yōu)點(diǎn))

  練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

 、賦>3; ②x≥-1; ③x≤-1.5;

 、0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

  (3)用觀察法求不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái).

 。4)觀察不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái),它的正數(shù)解是什么?

  自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問(wèn)題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的'異同點(diǎn).

  3.記號(hào)“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“!焙蛯(shí)心圓點(diǎn)“·”.

  五、作業(yè)

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≤0; (3)-1<x≤5;

  (4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

  3.求不等式x+2<5的正整數(shù)解.

  課堂教學(xué)設(shè)計(jì)說(shuō)明由于本節(jié)課的知識(shí)點(diǎn)比較多,因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),緊緊抓住不等式的解集這一重點(diǎn)知識(shí).通過(guò)對(duì)方程的解的電義的回憶,對(duì)比學(xué)習(xí)不等式的解及解集.同時(shí),為了進(jìn)一步加深學(xué)生對(duì)不等式的解集的理解,教學(xué)中注意運(yùn)用以下幾種教學(xué)方法:(1)啟發(fā)學(xué)生用試驗(yàn)的方法,結(jié)合數(shù)軸直觀形象來(lái)研究不等式的解和解集;(2)比較方程與不等式的解的異同點(diǎn);(3)通過(guò)例題與練習(xí),加深理解.

  在數(shù)軸上表示數(shù)是數(shù)形結(jié)合的具體體現(xiàn).而在數(shù)軸上表示不等式的解集則又進(jìn)了一步.因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),就充分考慮到應(yīng)使學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),進(jìn)一步領(lǐng)會(huì)數(shù)形結(jié)合的思想方法具有形象、直觀、易于說(shuō)明問(wèn)題的優(yōu)點(diǎn),并初步學(xué)會(huì)用數(shù)形結(jié)合的觀念去處理問(wèn)題、解決問(wèn)題.

八年級(jí)數(shù)學(xué)下冊(cè)教案10

  教學(xué)目標(biāo):

  認(rèn)知目標(biāo):1.了解一次函數(shù)與一元一次不等式的關(guān)系,會(huì)根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問(wèn)題.

  2.學(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問(wèn)題的.

  能力情感目標(biāo):經(jīng)歷不等式與函數(shù)關(guān)系問(wèn)題的探究過(guò)程,學(xué)習(xí)用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問(wèn)題的辨證.

  教學(xué)重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系的理解.

  教學(xué)難點(diǎn):利用一次函數(shù)的.圖象確定一元一次不等式的解集.

  教學(xué)過(guò)程:

  一、探究新知:

  通過(guò)上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時(shí),一次函數(shù)y=ax+b的值為0”是同一個(gè)問(wèn)題.現(xiàn)在我們來(lái)看看:

 。ǎ保┮韵聝蓚(gè)問(wèn)題是否為同一個(gè)問(wèn)題?

  ①解不等式:2x-4>0

 、诋(dāng)x為何值時(shí),函數(shù)y=2x-4的值大于0?

 。ǎ玻┠闳绾卫煤瘮(shù)的圖象來(lái)說(shuō)明②?

 。ǎ常敖獠坏仁剑玻-4<0”可以與怎樣的一次函數(shù)問(wèn)題是同一的?怎樣在圖象上加以說(shuō)明?

  歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(小)于0時(shí),求自變量響應(yīng)的取值范圍.

  二、應(yīng)用新知:

  1.練習(xí):P42練習(xí)1(3)(4)

 。.例2 用畫函數(shù)圖象的方法解不等式5x+4>2x+10.

  思考:我們應(yīng)該畫出什么函數(shù)的圖象來(lái)解?

  思路1:將不等式化為3x-6>0,然后畫出函數(shù)y=3x-6的圖象.

  思路2:將不等式5x+4>2x+10的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4和直線y=2x+10,對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)

 。担+4>2x+10.

  三、鞏固練習(xí)

  1.P42練習(xí)2(2)

  2.P45習(xí)題11.3第3、4題

  四、

  五、布置作業(yè)

八年級(jí)數(shù)學(xué)下冊(cè)教案11

  一、教學(xué)內(nèi)容

  1、教學(xué)內(nèi)容分析:二次根式是在數(shù)的開(kāi)方的基礎(chǔ)上展開(kāi)的,是算術(shù)平方根的抽象與擴(kuò)展,同時(shí)又為勾股定理和解一元二次方程打下基礎(chǔ).

  2、學(xué)生情況分析:本節(jié)課是二次根式的第一課時(shí),是在學(xué)生學(xué)方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開(kāi)方與乘方互為逆運(yùn)算的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的概念. 它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).對(duì)此班級(jí)中已初步形成合作交流、敢于探索與實(shí)踐的良好學(xué)風(fēng),學(xué)生間互相提問(wèn)的互動(dòng)氣氛較濃.

  二、教學(xué)設(shè)計(jì)理念

  根據(jù)基礎(chǔ)教育課程改革的具體目標(biāo),結(jié)合我校初二學(xué)生的實(shí)際情況,改變課程過(guò)于注重知識(shí)傳授的傾向,強(qiáng)調(diào)形成積極主動(dòng)的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和體驗(yàn),實(shí)施“三學(xué)六步”課堂改革教學(xué)模式.

  三、教學(xué)目標(biāo)

  1、知識(shí)與技能:

 。1)了解二次根式的概念,理解二次根式有意義的條件,并會(huì)求二次根式中所含字母的取值范圍;

 。2)理解二次根式的非負(fù)性.

  2、過(guò)程與方法:通過(guò)對(duì)學(xué)、群學(xué)等方式培養(yǎng)學(xué)生分析、概括等能力.

  情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生認(rèn)真參與、積極交流的主體意識(shí)和樂(lè)于探索、積極鉆研的科學(xué)精神、合作精神,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  四、教學(xué)重點(diǎn)、難點(diǎn)

  1、教學(xué)重點(diǎn):了解二次根式的概念,二次根式有意義的條件,并會(huì)求二次根式中所含字母的取值范圍

  2、教學(xué)難點(diǎn):理解二次根式的雙重非負(fù)性

  五、教學(xué)方法、手段

  1、教學(xué)方法:探究法、討論法、發(fā)現(xiàn)法

  2、教學(xué)手段:課件(ppt)

  六、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  問(wèn)題1 你能用帶有根號(hào)的的式子填空嗎?

 。1)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開(kāi)始落下的高度h(單位:m)滿足關(guān)系,如果用含有h 的式子表示 t ,則t= _____.

 。2)下球體過(guò)球心的橫截面面積為S,則橫截面圓形的.半徑r為 .

 。3)面積為3 的正方形的邊長(zhǎng)為_(kāi)____,面積為S 的正方形的邊長(zhǎng)為_(kāi)____.

  【師生互動(dòng)】:學(xué)生獨(dú)立思考,用算術(shù)平方根表示結(jié)果,教師適當(dāng)引導(dǎo)和評(píng)價(jià).

  【設(shè)計(jì)意圖】:讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性.

  探究新知,講授新課

  1.抽象概括,形成概念

  問(wèn)題2 上面所得的代數(shù)式:,它們的共同特點(diǎn)是什么?

  【師生互動(dòng)】:學(xué)生獨(dú)立思考并積極發(fā)言,教師歸納總結(jié).

  【設(shè)計(jì)意圖】:通過(guò)歸納總結(jié)引出二次根式的概念.

  問(wèn)題3 根據(jù)以前所學(xué)知識(shí),理解二次根式的定義,并且要注意什么.

  【師生互動(dòng)】:學(xué)生小組討論并且小組長(zhǎng)做好記錄,老師歸納總結(jié).

  【設(shè)計(jì)意圖】:加深對(duì)二次根式的理解.

  2.辨析概念,應(yīng)用鞏固

  問(wèn)題4 (辯一辯) 判斷給出式子是不是二次根式:①;

 、;③;④;⑤;⑥

  【師生互動(dòng)】:學(xué)生獨(dú)立思考并積極發(fā)言,并對(duì)于他們的答案做出正確地評(píng)價(jià),給予必要的鼓勵(lì).

  【設(shè)計(jì)意圖】:該題是利用搶答來(lái)調(diào)動(dòng)課堂氣氛,理解二次根式的定義.

  問(wèn)題5 根據(jù)要求編寫二次根式:

 。1)請(qǐng)寫出一個(gè)你喜歡的二次根式;

  請(qǐng)寫出一個(gè)被開(kāi)方數(shù)含x的二次根式.;

  請(qǐng)你寫出一個(gè)被開(kāi)方數(shù)含x,且當(dāng)x為任何實(shí)數(shù)的二次根式.

  【師生互動(dòng)】:學(xué)生獨(dú)立思考并積極發(fā)言,其他同學(xué)來(lái)檢驗(yàn)是否編寫正確.

  【設(shè)計(jì)意圖】:設(shè)計(jì)開(kāi)放性題開(kāi)拓學(xué)生思維,進(jìn)一步加深對(duì)二次根式的理解.

  靈活運(yùn)用,鞏固提高

  問(wèn)題6 當(dāng)x是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

  【師生互動(dòng)】:

 。1)學(xué)生口答,老師板書規(guī)范解題格式,(2)(3)學(xué)生演板.學(xué)生完成之后小組討論結(jié)果的正確性,同時(shí)對(duì)演板的同學(xué)做出評(píng)價(jià),老師再適時(shí)補(bǔ)充,(2)(3)評(píng)價(jià)增加一道變式,讓學(xué)生能靈活運(yùn)用知識(shí).最后再歸納這類式子有意義要注意:

  (1)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù);

 。2)分母中含有字母時(shí),要保證分母不為0.

  【設(shè)計(jì)意圖】:本題強(qiáng)化學(xué)生對(duì)二次根式被開(kāi)方數(shù)為非負(fù)數(shù)的理解,同時(shí)考查學(xué)生的靈活運(yùn)用的能力,訓(xùn)練學(xué)生的思維.

  發(fā)散思維,拓展延伸

  問(wèn)題7 已知實(shí)數(shù)x,y滿足,求:

 。1)x的取值范圍;

 。2)以x,y的值為兩邊長(zhǎng)的等腰三角形的周長(zhǎng).

  【師生互動(dòng)】:學(xué)生先獨(dú)立思考,再小組合作,將答案寫在白板上,并請(qǐng)小組兩位成員上臺(tái)展示,其他同學(xué)提出質(zhì)疑,補(bǔ)充,老師適當(dāng)引導(dǎo)點(diǎn)評(píng).

  【設(shè)計(jì)意圖】:本題第一問(wèn)進(jìn)一步加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)為非負(fù)數(shù)的理解;第二問(wèn)滲透分類思想,通過(guò)小組合作,上臺(tái)展示體現(xiàn)學(xué)生為主體,發(fā)揮學(xué)生的能動(dòng)性.

  問(wèn)題8 (走進(jìn)中考)已知,則 p(x,y)是第 象限.

  【師生互動(dòng)】:學(xué)生先獨(dú)立思考講解思路,老師適當(dāng)點(diǎn)評(píng).

  【設(shè)計(jì)意圖】:本題主要考察

  課堂小結(jié),盤點(diǎn)收獲

  一路下來(lái),我們結(jié)識(shí)了很多新知識(shí),你能談?wù)勛约旱氖斋@嗎?說(shuō)一說(shuō),讓大家一起來(lái)分享.

  【師生互動(dòng)】:學(xué)生舉手發(fā)言,老師點(diǎn)評(píng)并鼓勵(lì).

  【設(shè)計(jì)意圖】:學(xué)生總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),幫助學(xué)生把握知識(shí)要點(diǎn),理清知識(shí)脈絡(luò),體會(huì)數(shù)學(xué)中的分類思想.

  作業(yè)設(shè)計(jì),鞏固提高

  必做題:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(寫序號(hào))

  代數(shù)式有意義,則字母x的取值范圍是 .

  3.代數(shù)式的值為0,則a= .

  選做題:1.已知,則的值為 .

  2.若式子 有意義,則P(a,b)在第 象限.

  小組合作題:

  1.已知m,n滿足 ,求:(1)m,n的值.

  (2)將m,n的值 代入并化簡(jiǎn):

 。3)請(qǐng)選一個(gè)你喜歡的x的值代入求值.

  【設(shè)計(jì)意圖】:氣氛通過(guò)分層作業(yè),教師能及時(shí)了解學(xué)生對(duì)本節(jié)知識(shí)的掌握情況.必做題和選做題如果上課有時(shí)間打算用砸金蛋的形式調(diào)動(dòng)課堂.

 。┌鍟O(shè)計(jì)

  16.1.1 二次根式 定義:形如 的式子叫做 二次根式 注:(雙重非負(fù)性) (老師板書) (學(xué)生演板)

八年級(jí)數(shù)學(xué)下冊(cè)教案12

  教學(xué)目標(biāo)

 。ㄒ唬┲R(shí)與技能目標(biāo)

  使學(xué)生理解并掌握分式的基本性質(zhì),并能運(yùn)用這些性質(zhì)進(jìn)行分式化簡(jiǎn).

 。ǘ┻^(guò)程與方法目標(biāo)

  通過(guò)分式的化簡(jiǎn)提高學(xué)生的運(yùn)算能力.

 。ㄈ┣楦信c價(jià)值目標(biāo).

  滲透類比轉(zhuǎn)化的數(shù)學(xué)思想方法.

  教學(xué)重點(diǎn)和難點(diǎn)

  1.重點(diǎn):使學(xué)生理解并掌握分式的.基本性質(zhì),這是學(xué)好本章的關(guān)鍵.

  2.難點(diǎn):靈活運(yùn)用分式的基本性質(zhì)進(jìn)行分式化簡(jiǎn).

  教學(xué)方法:分組討論.

  教學(xué)過(guò)程

  (一)情境引入

  1.?dāng)?shù)學(xué)小笑話:

  從前有個(gè)不學(xué)無(wú)術(shù)的富家子弟,有一次,父母出遠(yuǎn)門去辦事,把他交給廚師照看,廚師問(wèn)他:“我每天三餐每頓給你做兩個(gè)饅頭,夠嗎?”他哭喪著臉說(shuō):“不夠,不夠!”廚師又問(wèn):“那我就一天給你吃六個(gè),怎么樣?”他馬上欣喜地說(shuō):“夠了!夠了!”

  2.問(wèn):這個(gè)富家子弟為什么會(huì)犯這樣的錯(cuò)誤?

  3.分?jǐn)?shù)約分的方法及依據(jù)是什么?

 。1)的依據(jù)是什么?呢?

 。2)你認(rèn)為分式與相等嗎?與呢?

  (二)新課

  1.類比分?jǐn)?shù)的基本性質(zhì),由學(xué)生小結(jié)出分式的基本性質(zhì):

  分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變,即:

  =,=(其中M是不等于零的整式)

  2.加深對(duì)分式基本性質(zhì)的理解:

  例1下列等式的右邊是怎樣從左邊得到的?

  由學(xué)生口述分析,并反問(wèn):為什么c≠0?

  解:∵c≠0,∴==(2)=學(xué)生口答,教師設(shè)疑:為什么題目未給x≠0的條件?(引導(dǎo)學(xué)生學(xué)會(huì)分析題目中的隱含條件.)

八年級(jí)數(shù)學(xué)下冊(cè)教案13

  一、教學(xué)目標(biāo)

  1.掌握一元二次方程的定義,能夠判斷一個(gè)方程是否是一元二次方程.

  2.能夠?qū)⒁辉畏匠袒癁橐话阈问讲⒋_定a,b,c的值.

  二、(重)難點(diǎn)預(yù)見(jiàn)

  重點(diǎn):知道什么叫做一元二次方程,能夠判斷一個(gè)方程是否是一元二次方程. 難點(diǎn):能夠?qū)⒁辉畏匠袒癁橐话阈问讲⒋_定a,b,c的值.

  三、學(xué)法指導(dǎo)

  結(jié)合教材和預(yù)習(xí)學(xué)案,先獨(dú)立思考,遇到困難小對(duì)子之間進(jìn)行幫扶,完成學(xué)習(xí)任務(wù).

  四、教學(xué)過(guò)程

  開(kāi)場(chǎng)白設(shè)計(jì):

  一元二次方程是初中數(shù)學(xué)中非常重要的內(nèi)容,它在實(shí)際生活中有著非常廣泛的應(yīng)用.什么形式的方程是一元二次方程?這樣的方程怎么解答呢?它又能解決哪些問(wèn)題呢?帶著這些問(wèn)題,讓我們一起學(xué)習(xí)《一元二次方程》這一章,今天我們來(lái)學(xué)習(xí)第一節(jié)課,同學(xué)們肯定有很多新的收獲.

  1、憶一憶

  在前面我們?cè)?jīng)學(xué)習(xí)了什么叫做一元一次方程?一元指的是什么含義?一次呢?你能猜想什么叫做一元二次方程嗎?

  學(xué)法指導(dǎo):

  本節(jié)課學(xué)習(xí)一元二次方程先讓學(xué)生回憶一元一次方程.學(xué)習(xí)四邊形可以讓學(xué)生回憶三角形,學(xué)習(xí)四邊形的邊、角、頂點(diǎn),可以讓學(xué)生回憶三角形的邊、角、頂點(diǎn),則可達(dá)到水到渠成的效果.

  2、想一想

  請(qǐng)同學(xué)們根據(jù)題意,只列出方程,不進(jìn)行解答:

  (1)一個(gè)矩形的長(zhǎng)比寬多2cm,矩形的面積是15cm,求這個(gè)矩形的長(zhǎng)和寬.

  (2)兩個(gè)連續(xù)正整數(shù)的平方和是313,求這兩個(gè)正整數(shù).

  (3)直角三角形三邊的長(zhǎng)都是整數(shù),它的斜邊長(zhǎng)為13cm,兩條直角邊的差為7cm,求兩條直角邊的長(zhǎng).

  預(yù)習(xí)困難預(yù)見(jiàn):

  (1)學(xué)生在列方程時(shí)沒(méi)有搞清楚“平方和”與“和的平方”的區(qū)別,以至于把方程列錯(cuò)了.

  (2)學(xué)生在解答第(3)題時(shí),設(shè)未知數(shù)時(shí)忘記帶單位.

  (3)還有的同學(xué)沒(méi)有注意只列方程,以至于學(xué)生列出方程后嘗試著解方程,導(dǎo)致耽誤了一些時(shí)間.

  改進(jìn)措施:

  教師巡視指導(dǎo),發(fā)現(xiàn)失誤及時(shí)引導(dǎo);小組內(nèi)互查,辯論,質(zhì)疑.

  3、議一議

  請(qǐng)同學(xué)們將上面的方程按照以下要求進(jìn)行整理:

  (1)使方程的右邊為0(2)方程的左邊按x的降冪排列.我們會(huì)得到:

 、 ② ③

  你能發(fā)現(xiàn)上面三個(gè)方程有什么共同點(diǎn)?

  _____________________叫做一元二次方程.在定義中著重強(qiáng)調(diào)了幾點(diǎn)?哪幾點(diǎn)?如果給你一個(gè)方程,讓你判定它是否是一元二次方程,你關(guān)鍵看哪幾方面?

  學(xué)法指導(dǎo)

  學(xué)習(xí)一元二次方程的'概念,讓同學(xué)們剖析定義,總結(jié)判定一個(gè)方程是否是一元二次方程的方法.

  4、試一試

  下面方程是一元二次方程嗎?為什么?

 、賏x-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

  方法提升:

  由一元二次方程的定義可知,只有同時(shí)滿足下列三個(gè)條件:①整式方程;②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2,這樣的方程才是一元二次方程,否則缺少其中任何一個(gè)條件的方程都不是一元二次方程.

  口訣生成:

  判斷一元二次方程并不難,三個(gè)條件要找全:一元,二次,整式判,正確答案就出現(xiàn).

  5、學(xué)一學(xué)

  一元二次方程都可以化為ax+bx +c =0(a,b,c為常數(shù),a≠0)的形式,稱為一元二次方程的一般形式,其中ax,bx,c 分別稱為這個(gè)方程的二次項(xiàng),一次項(xiàng)和常數(shù)項(xiàng),a,b分別稱為二次項(xiàng)系數(shù),一次項(xiàng)系數(shù).你能指出下列方程的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)嗎?請(qǐng)你用a,b,c表示出來(lái).

八年級(jí)數(shù)學(xué)下冊(cè)教案14

  一、目標(biāo)要求

  1.理解掌握異分母分式加減法法則。

  2.能正確熟練地進(jìn)行異分母分式的加減運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):異分母分式的加減法法則及其運(yùn)用。

  難點(diǎn):正確確定最簡(jiǎn)公分母和靈活運(yùn)用法則。

  1.異分母分式的加減法法則:異分母分式相加減,先通分,變?yōu)橥帜阜质,然后再加減。用式子表示為:±=。

  2.分式通分時(shí),要注意幾點(diǎn):(1)如果各分母的系數(shù)都是整數(shù)時(shí)通分,常取它們的系數(shù)的最小公倍數(shù),作為最簡(jiǎn)公分母的系數(shù);(2)若分母的系數(shù)不是整數(shù)時(shí),先用分式的基本性質(zhì)將其化為整數(shù),再求最小公倍數(shù);(3)分母的系數(shù)若是負(fù)數(shù)時(shí),應(yīng)利用符號(hào)法則,把負(fù)號(hào)提取到分式前面;(4)若分母是多項(xiàng)式時(shí),先按某一字母順序排列,然后再進(jìn)行因式分解,再確定最簡(jiǎn)公分母。

  三、解題方法指導(dǎo)

  【例1】計(jì)算:(1)++;

 。2)-x-1;

 。3)--。

  分析:(1)把分母的各多項(xiàng)式按x的降冪排列,能先分解因式的將其分解因式,找最簡(jiǎn)公分母,轉(zhuǎn)化為同分母的分式加減法。(2)一個(gè)整式與一個(gè)分式相加減,應(yīng)把這個(gè)整式看作一個(gè)分母是1的式子來(lái)進(jìn)行通分,注意-x-1=,要注意負(fù)號(hào)問(wèn)題。

  解:(1)原式=-+=-+====;

 。2)原式======;

 。3)原式=--===。

  【例2】計(jì)算:。+++。

  分析:此題若將4個(gè)分式同時(shí)通分,分子將是很復(fù)雜的,計(jì)算也是比較復(fù)雜的`。各式的分母適用于平方差公式,所以采取分步通分的方法進(jìn)行加減。

  解:原式=++=++=+=+==。

  四、激活思維訓(xùn)練

  ▲知識(shí)點(diǎn):異分母分式的加減

  【例】計(jì)算:-+。

  分析:此題如果直接通分,運(yùn)算勢(shì)必十分復(fù)雜。當(dāng)各分子的次數(shù)大于或等于分母的次數(shù)時(shí),可利用多項(xiàng)式的除法,將其分離為整式部分與分式部分的和,再加減會(huì)使運(yùn)算簡(jiǎn)便。

  解:原式=[x+2-]-[x+3+]

 。玔+1]

  =x+2--x-3-++1

  =--+=====。

  五、基礎(chǔ)知識(shí)檢測(cè)

  1.填空題:

八年級(jí)數(shù)學(xué)下冊(cè)教案15

  一、創(chuàng)設(shè)情境

  在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問(wèn)題.

  問(wèn)題1如圖是某地一天內(nèi)的氣溫變化圖.

  看圖回答:

  (1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說(shuō)出這一時(shí)刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?

  解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?

  二、探究歸納

  問(wèn)題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的'利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說(shuō)說(shuō)隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.

  解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).

  問(wèn)題3收音機(jī)刻度盤的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:

  觀察上表回答:

  (1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?

  (2)波長(zhǎng)l越大,頻率f就________.

  解(1)l與f的乘積是一個(gè)定值,即

  lf=300000,

  或者說(shuō).

  (2)波長(zhǎng)l越大,頻率f就 越小 .

  問(wèn)題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.

  利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問(wèn)題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問(wèn)題1中,刻畫氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過(guò)程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個(gè)問(wèn)題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過(guò)程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值

【八年級(jí)數(shù)學(xué)下冊(cè)教案】相關(guān)文章:

八年級(jí)數(shù)學(xué)下冊(cè)教案01-10

八年級(jí)數(shù)學(xué)下冊(cè)教案05-16

數(shù)學(xué)下冊(cè)教案03-16

八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案04-27

八年級(jí)數(shù)學(xué)下冊(cè)教案15篇01-10

八年級(jí)數(shù)學(xué)下冊(cè)教案(15篇)02-20

八年級(jí)下冊(cè)數(shù)學(xué)教案優(yōu)秀02-29

數(shù)學(xué)下冊(cè)《變化的量》教案11-21

數(shù)學(xué)下冊(cè)教案 15篇03-16