- 相關(guān)推薦
數(shù)學(xué)滬科版七年級教案
作為一位不辭辛勞的人民教師,常常需要準(zhǔn)備教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。教案要怎么寫呢?下面是小編為大家收集的數(shù)學(xué)滬科版七年級教案,歡迎大家分享。
數(shù)學(xué)滬科版七年級教案1
教學(xué)目標(biāo)
1.了解的概念和的畫法,掌握的三要素;
2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大小;
3.使學(xué)生初步了解數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生相互聯(lián)系的觀點。
教學(xué)建議
一、重點、難點分析
本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與上點的對應(yīng)關(guān)系。的概念包含兩個內(nèi)容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎(chǔ).
二、知識結(jié)構(gòu)
有了,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下表:
定義
三要素
應(yīng)用
數(shù)形結(jié)合
規(guī)定了原點、正方向、單位長度的直線叫
原 點
正方向
單位長度
幫助理解有理數(shù)的概念,每個有理數(shù)都可用上的點表示,但上的點并非都是有理數(shù)
比較有理數(shù)大小,上右邊的數(shù)總比左邊的數(shù)要大
在理解并掌握概念的基礎(chǔ)之上,要會畫出,能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù),要知道所有的有理數(shù)都可以用上的點表示,會利用比較有理數(shù)的大小。
三、教法建議
小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的'直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關(guān),但為了教學(xué)上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
關(guān)于有理數(shù)與上的點的對應(yīng)關(guān)系,應(yīng)該明確的是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應(yīng)的關(guān)系。根據(jù)幾個有理數(shù)在上所對應(yīng)的點的相互位置關(guān)系,應(yīng)該能夠判斷它們之間的大小關(guān)系。通過點與有理數(shù)的對應(yīng)關(guān)系及其應(yīng)用,逐步滲透數(shù)形結(jié)合的思想。
四、的相關(guān)知識點
1.的概念
(1)規(guī)定了原點、正方向和單位長度的直線叫做.
這里包含兩個內(nèi)容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的
(2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù).
以是理解有理數(shù)概念與運算的重要工具.有了,數(shù)和形得到初步結(jié)合,數(shù)與表示數(shù)的圖形(如)相結(jié)合的思想是學(xué)習(xí)數(shù)學(xué)的重要思想.另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小.因此,應(yīng)重視對的學(xué)習(xí).
2.的畫法
(1)畫直線(一般畫成水平的)、定原點,標(biāo)出原點“O”.
(2)取原點向右方向為正方向,并標(biāo)出箭頭.
(3)選適當(dāng)?shù)拈L度作為單位長度,并標(biāo)出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標(biāo)注數(shù)字時,負(fù)數(shù)的次序不能寫錯,如下圖。
3.用比較有理數(shù)的大小
(1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。
(2)由正、負(fù)數(shù)在上的位置可知:正數(shù)都有大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù)。
(3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“ ”的寫法,正確應(yīng)寫成“ ”。
五、定義的理解
1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.
2.所有的有理數(shù),都可以用上的點表示.例如:在上畫出表示下列各數(shù)的點(如圖2).
A點表示-4; B點表示-1.5;
O點表示0; C點表示3.5;
D點表示6.
從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負(fù)數(shù)在上的位置,可以知道:
正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù).
因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用 ,表示 是正數(shù);反之,知道 是正數(shù)也可以表示為 。
同理, ,表示 是負(fù)數(shù);反之 是負(fù)數(shù)也可以表示為 。
3.正常見幾種錯誤
1)沒有方向
2)沒有原點
3)單位長度不統(tǒng)一
數(shù)學(xué)滬科版七年級教案2
教學(xué)目標(biāo):
1、在解決問題的過程中,探索分?jǐn)?shù)除以整數(shù)的計算方法,并能正確的進(jìn)行計算。
2、在探索分?jǐn)?shù)除以整數(shù)計算方法的過程中,體驗算法的多樣性,養(yǎng)成獨立思考的習(xí)慣,促進(jìn)個性化學(xué)習(xí)。
3、在解決現(xiàn)實問題的過程中,感受數(shù)學(xué)與生活的密切聯(lián)系,體驗學(xué)數(shù)學(xué),用數(shù)學(xué)的樂趣。
教學(xué)過程:
一、創(chuàng)設(shè)情境,提出問題。
師:同學(xué)們,我們學(xué)校設(shè)立了許多課外興趣小組,同學(xué)們在課余時間可以根據(jù)自己的興趣愛好參加小組的活動。今天我們一起走進(jìn)布藝興趣小組,看看那里的同學(xué)給我們提出了哪些數(shù)學(xué)問題。
師:看大屏幕,從情境圖中你找到了哪些數(shù)學(xué)信息?
生:布藝興趣小組的同學(xué)要用9/10米的布給小猴做衣服。如果做背心,可以做3件;如果做褲子,可以做2條。
師:根據(jù)這些信息,你能提出什么數(shù)學(xué)問題?
生1:做一件背心需要花布多少米?
生2:做一條褲子需要花布多少米?
(教師根據(jù)學(xué)生的提問,有選擇的進(jìn)行板書)
二、自主探索,獲取新知
1、獨立思考、自主探究。
師:我們先看第一個問題 “做一件背心需要花布多少米?”怎樣列算式?
生1:9/10÷3=
師:為什么用除法?
生1:把9/10平均分成3份,求1份是多少,所以用除法。
師:誰還能再說一遍?
生重復(fù)。
師:9/10÷3結(jié)果是多少呢?請在自己的練習(xí)本寫一寫、畫一畫,算一算。
生自主操作,師適時巡視指導(dǎo),找出兩位同學(xué)上臺板演。
2、合作交流,解決問題。
師:將你的想法和同桌交流一下。
生交流。
師:我們來看幾位同學(xué)的方法。
(投影展示,畫線段圖的方法)
師:我們先看第一位同學(xué)的方法,這是哪位同學(xué)的,你能來介紹一下嗎?
生:(畫線段圖的方法)把9/10米平均分成3份,每份是3/10米。
師:我們再來看一位同學(xué)的,他用的是長方形布條,這是哪位同學(xué)的,介紹一下?
生:把9/10米平均分成3份,每份是3/10米。
師:不管是畫線段圖還是用長方形來表示,我們都可以得到每份是3/10米。
板書方法:畫線段圖。
師:我們再來看黑板上這兩位同學(xué)的(學(xué)生板演),請這位同學(xué)來介紹一下你的做法。
生:9/10÷3=9÷3/10=3/10(米)
把9/10米平均分成3段,就是把9個1/10米平均分成3份,每份是(9÷3)個1/10米,即3/10米
師:誰能再重復(fù)一遍?生重復(fù)。
師:我們可以用平均分的思想直接進(jìn)行計算。(板書:平均分的方法)
師:看這種方法9/10÷3=9/10×1/3=3/10(米),(學(xué)生板演內(nèi)容)誰來介紹一下?
生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計算,每段是9/10×1/3=3/10(米)。
生似懂非懂。
師:你們能明白嗎?我們結(jié)合這條形圖來看一下,(出示課件)。
師:把條形圖平均分成3份,一份占多少?
生:1/3。
師:也就是求什么/
生:也就是求9/10米的1/3。
師:我們可以怎樣計算?
生:9/10×1/3
師:看一下算式?有什么變化?
生1:前面是除法,后面是乘法。
生2:3和1/3互為倒數(shù)
師:也就是除法轉(zhuǎn)化成了乘法。(板書:轉(zhuǎn)化)
師:誰能再說一說這種方法?
師:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計算,每段是9/10×1/3=3/10(米)。
師:這就是第三種方法,利用乘法的意義進(jìn)行計算。(板書:乘法的意義)
師:除了這幾種方法,你還有哪些辦法?
生:轉(zhuǎn)化成小數(shù)來計算。
師:說一下
生:9/10米化成小數(shù)0.9米,平均分成3份,每份就是0.9÷3=0.3(米)。
師板書:9/10÷3=0.9÷3=0.3(米)
師:同學(xué)們想出了這么多方法解決問題,它們的結(jié)果相同,說明大家的思路是正確的,哪種方法更好一些呢?
生1:我認(rèn)為第三種方法比較好,因為算起來比較簡便。
生2:我認(rèn)為第三種方法比較好,因為第二種方法只適用于能出開的情況。
師:說得非常好,到底他說的對不對,等會我們來驗證一下。
3、選擇算法,解決問題。
師:同學(xué)們,看來大家都已經(jīng)有自己喜歡的方法了,我們來看第二個問題“做一條褲子需要花布多少米?”用你喜歡的方法獨立完成。
(讓學(xué)生獨立列式,教師巡回指導(dǎo),了解學(xué)生情況,找一位同學(xué)進(jìn)行板演)
9/10÷2=9/10×1/2=9/20(米)
師:我們來看這位同學(xué)的,你們都和這位同學(xué)一樣嗎?誰來說說這種方法?
生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法來計算。
師:誰能再說一遍
生重復(fù)。
師:看算式,我們把除法轉(zhuǎn)化成了乘法來計算?磥泶蠹叶加X得這種方法比較簡單。
4、歸納概括,推廣應(yīng)用。
(1)師:仔細(xì)觀察、分析剛才所解決的`兩個問題,想一想:我們怎樣計算分?jǐn)?shù)除以整數(shù)?看這兩個算式,前面是除法,后面是?
生:乘法
師:看圈起來的兩個數(shù)字,有什么關(guān)系?
生1:倒數(shù)
生2:互為倒數(shù)
師:一定要說完整,F(xiàn)在誰能用一句話來總結(jié)一下怎樣計算分?jǐn)?shù)除以整數(shù)的計算方法?
生:分?jǐn)?shù)除以整數(shù)等于分?jǐn)?shù)乘這個整數(shù)的倒數(shù)。(師板書)
師:誰能再說一遍?
生重復(fù),全班同學(xué)一塊交流。
三、鞏固練習(xí),加深理解
1、自主練習(xí)1
先讓學(xué)生獨立填寫,然后組織交流。
交流時讓學(xué)生說說自己的算法,體會到此題分?jǐn)?shù)的分子都能被除數(shù)整除,所以采用分子除以除數(shù)的方法相對簡捷。
2、自主練習(xí)2
讓學(xué)生運用分?jǐn)?shù)除以整數(shù)的計算方法連一連。獨立完成,組織交流。
首先讓學(xué)生觀察第一行算式與第二行算式的特點以及之間的關(guān)系,從而悟出此題的意圖,學(xué)生就可以順利地利用分?jǐn)?shù)除以整數(shù)的計算方法得出應(yīng)該連的相應(yīng)算式。
3、自主練習(xí)5
獨立完成,投影展示交流。(兩種方法,直接去除或者轉(zhuǎn)化成乘法計算)
此題把解決問題和計算知識的練習(xí)融為一體,實現(xiàn)解決問題能力的培養(yǎng)與基礎(chǔ)知識和基本技能的學(xué)習(xí)同步發(fā)展的教學(xué)目標(biāo)。
4、自主練習(xí)4
獨立完成,板演交流
此題把解決問題和計算知識的練習(xí)融為一體,實現(xiàn)解決問題能力的培養(yǎng)與基礎(chǔ)知識和基本技能的學(xué)習(xí)同步發(fā)展的教學(xué)目標(biāo)。
四、課堂小結(jié)
師:這節(jié)課我們主要學(xué)習(xí)了什么知識?
生:分?jǐn)?shù)除以整數(shù)(板書)
師:通過這節(jié)課的學(xué)習(xí),你有什么收獲?
生匯報。
數(shù)學(xué)滬科版七年級教案3
教學(xué)目標(biāo)
1.使學(xué)生正確理解的意義,掌握的三要素;
2.使學(xué)生學(xué)會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.
教學(xué)重點和難點
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應(yīng)關(guān)系.
課堂教學(xué)過程 設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.小學(xué)里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認(rèn)為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——.
二、講授新課
讓學(xué)生觀察掛圖——放大的溫度計,同時教師給予語言指導(dǎo):利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負(fù)方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負(fù));
3.選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進(jìn)而提問學(xué)生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習(xí)
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習(xí)
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)
指導(dǎo)學(xué)生閱讀教材后指出:是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學(xué)們能掌握的三要素,正確地畫出,在此還要提醒同學(xué)們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的`點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
課堂教學(xué)設(shè)計說明
從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則.小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念.教學(xué)中,的三要素中的每一要素都要認(rèn)真分析它的作用,使學(xué)生從直觀認(rèn)識上升到理性認(rèn)識.直線、都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進(jìn)行抽象的思維活動還是可行的例如,向?qū)W生提問:在上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等.
數(shù)學(xué)滬科版七年級教案4
教學(xué)目的
借助“線段圖”分析復(fù)雜的行程問題中的數(shù)量關(guān)系,從而建立方程解決實際問題,發(fā)展分析問題,解決問題的能力,進(jìn)一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關(guān)行程問題。
2.難點:間接設(shè)未知數(shù)。
教學(xué)過程
一、復(fù)習(xí)
1.列一元一次方程解應(yīng)用題的一般步驟和方法是什么?
2.行程問題中的基本數(shù)量關(guān)系是什么?
路程=速度×?xí)r間 速度=路程 / 時間
二、新授
例1.小張和父親預(yù)定搭乘家門口的'公共汽車趕往火車站,去家鄉(xiāng)看望爺爺,在行駛了三分之一路程后,估計繼續(xù)乘公共汽車將會在火車開車后半小時到達(dá)火車站,隨即下車改乘出租車,車速提高了一倍,結(jié)果趕在火車開車前15分鐘到達(dá)火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠(yuǎn)?
畫“線段圖”分析, 若直接設(shè)元,設(shè)小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關(guān)系是什么?
如果設(shè)乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設(shè)公共汽車從小張家到火車站要x小時。
設(shè)未知數(shù)的方法不同,所列方程的復(fù)雜程度一般也不同,因此在設(shè)未知數(shù)時要有所選擇。
三、鞏固練習(xí)
教科書第17頁練習(xí)1、2。
四、小結(jié)
有關(guān)行程問題的應(yīng)用題常見的一個數(shù)量關(guān)系:路程=速度×?xí)r間,以及由此導(dǎo)出的其他關(guān)系。如何選擇設(shè)未知數(shù)使方程較為簡單呢?關(guān)鍵是找出較簡捷地反映題目全部含義的等量關(guān)系,根據(jù)這個等量關(guān)系確定怎樣設(shè)未知數(shù)。
五、作業(yè)
教科書習(xí)題6.3.2,第1至5題。
【數(shù)學(xué)滬科版七年級教案】相關(guān)文章:
滬科版八年級物理教案11-06
滬教版語文教案12-29
滬科版八年級物理上冊教案06-09
滬教版七年級上冊語文教案01-14
滬科版八年級物理教案(7篇)11-08
滬科版八年級物理教案7篇11-07
滬科版八年級物理教案(精選12篇)07-27
滬教版語文七年級上學(xué)期教案參閱10-30
滬教版語文教案15篇12-29
滬科版八年級物理上冊教案9篇06-09