丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>七年級數(shù)學教案>七年級數(shù)學教案

七年級數(shù)學教案

時間:2022-11-12 08:37:03 七年級數(shù)學教案 我要投稿

七年級數(shù)學教案(合集15篇)

  作為一名專為他人授業(yè)解惑的人民教師,常常要寫一份優(yōu)秀的教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。我們應(yīng)該怎么寫教案呢?以下是小編整理的七年級數(shù)學教案,希望對大家有所幫助。

七年級數(shù)學教案1

  教學目標

  知識與能力

  從簡單的轉(zhuǎn)盤游戲開始,使學生在生活經(jīng)驗和試驗的基礎(chǔ)上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

  教學思考

  能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題

  在轉(zhuǎn)盤游戲過程中,經(jīng)歷猜測結(jié)果,實驗驗證,分析試驗結(jié)果等數(shù)學活動,增加數(shù)學活動經(jīng)驗。

  情感態(tài)度與價值觀

  在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。

  教學重點難點:

  在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學生都能積極認真參與課堂設(shè)計中的實驗,真正在實驗中獲得知識上的認識。

  教學過程

  創(chuàng)設(shè)情境,切入標題

  同學們,商場經(jīng)常利用轉(zhuǎn)盤游戲進行抽獎,你認為顧客們的中獎可能性有多大呢?這節(jié)課我們就來探究一下有關(guān)轉(zhuǎn)盤游戲的問題。 新課探究

  請同學們猜測,當我自由轉(zhuǎn)動轉(zhuǎn)盤時,指針會落在什么顏域呢?

  請各小組分別派一名代表,看哪組能轉(zhuǎn)出紅色。

  結(jié)果,8小組有6組轉(zhuǎn)出了紅色。

  為什么會出現(xiàn)這樣的結(jié)果呢?

  因為,在這個轉(zhuǎn)盤中,紅域的面積大,白域的面積小,因此,當轉(zhuǎn)盤停上轉(zhuǎn)動時,指針落到紅域的可能性大。

  大家同意這種看法嗎?下面我們親自動手感受一下。

  學生按照題目要求進行實驗。

  請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結(jié)果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

  請同學們對我們的實驗結(jié)果進行分析交流,談?wù)勀阍谠囼炛杏心男┬牡谩?/p>

  根據(jù)觀察,轉(zhuǎn)盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應(yīng)該是一半。通過對我們?nèi)嗟膶嶒灲Y(jié)果分析,指針落在紅域的比例是50∶96,結(jié)果接近百分之五十。

  在小組內(nèi)實驗結(jié)果不明顯,實驗次數(shù)越多越能說明問題。

  通過實驗,我們確定感受到,轉(zhuǎn)盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關(guān)系。以后在生活中再遇到轉(zhuǎn)盤游戲問題可要想想今天的實驗結(jié)論。

  游戲與交流

  下面我們利用轉(zhuǎn)盤做一下數(shù)學游戲(出示幻燈片),學生按教學設(shè)計中要求進行游戲,教師巡回指導(dǎo)。

  每組每人游戲一次,全班共游戲48次。其游戲結(jié)果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

  請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉(zhuǎn)盤轉(zhuǎn)到“平均數(shù)增大1”區(qū)域的.可能性大,從面積大小就可以看出。

  如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

  同學們說出很多種方法,不一一列舉。

  “平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

  如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

  同學們說的都很好,課后能不能自己也利用轉(zhuǎn)盤設(shè)計一個新的游戲,感興趣的同學可以在課下與我交流。

  以下過程同教學設(shè)計,略去。

  隨堂練習

  指導(dǎo)學生完成教材第206頁習題。

  課時小結(jié)

  學生可從各個方面加以小結(jié)。 布置作業(yè)

  仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設(shè)計本節(jié)轉(zhuǎn)盤游戲。

七年級數(shù)學教案2

  一、素質(zhì)教育目標

 �。ㄒ唬┲R教學點

  1.使學生理解近似數(shù)和有效數(shù)字的意義

  2.給一個近似數(shù),能說出它精確到哪一痊,它有幾個有效數(shù)字

  3.使學生了解近似數(shù)和有效數(shù)字是在實踐中產(chǎn)生的.

 �。ǘ┠芰τ�(xùn)練點

  通過說出一個近似數(shù)的精確度和有效數(shù)字,培養(yǎng)學生把握關(guān)鍵字詞,準確理解概念的能力.

 �。ㄈ┑掠凉B透點

  通過近似數(shù)的學習,向?qū)W生滲透具體問題具體分析的辯證唯物主義思想

 �。ㄋ模┟烙凉B透點

  由于實際生活中有時要把結(jié)果搞得準確是辦不到的或沒有必要,所以近似數(shù)應(yīng)運而生,近似數(shù)和準確數(shù)給人以美的享受.

  二、學法引導(dǎo)

  1.教學方法:從實際問題出發(fā),啟發(fā)引導(dǎo),充分體現(xiàn)學生為主全,注重學生參與意識

  2.學生學法,從身邊找出應(yīng)用近似數(shù),準確數(shù)的例子→近似數(shù)概念→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:理解近似數(shù)的精確度和有效數(shù)字.

  2.難點:正確把握一個近似數(shù)的精確度及它的有效數(shù)字的個數(shù).

  3.疑點:用科學記數(shù)法表示的近似數(shù)的精確度和有效數(shù)字的個數(shù).

  四、課時安排

  1課時

  五、教具學具準備

  投影儀,自制膠片

  六、師生互動活動設(shè)計

  教者提出生活中應(yīng)用準確數(shù)和近似數(shù)的例子,學生討論回答,學生自己找出類似的例子,教者提出精確度和有效數(shù)字的概念,教者提出近似數(shù)的有關(guān)問題,學生討論解決.

  七、教學步驟

  (一)提出問題,創(chuàng)設(shè)情境

  師:有10千克蘋果,平均分給3個人,應(yīng)該怎樣分?

  生:平均每人千克

  師:給你一架天平,你能準確地稱出每人所得蘋果的千克數(shù)嗎?

  生:不能

  師:哪怎么分

  生:取近似值

  師:板書課題

  【教法說明】通過提出實際問題,使學生認識到研究近似數(shù)是必須的,是自然的,從而提高學生近似數(shù)的積極性

  (二)探索新知,講授新課

  師出示投影1

  下列實際問題中出現(xiàn)的數(shù),哪些是精確數(shù),哪些是近似數(shù).

 �。�1)初一(1)有55名同學

  (2)地球的半徑約為6370千米

 �。�3)中華人民共和國現(xiàn)在有31個省級行政單位

 �。�4)小明的身高接近1.6米

  學生活動:回答上述問題后,自己找出生活中應(yīng)用準確數(shù)和近似數(shù)的例子.

  師:我們在解決實際問題時,有許多時候只能用近似數(shù)你知道為什么嗎?

  啟發(fā)學生得出兩方面原因:1.搞得完全準確有時是辦不到的,2.往往也沒有必要搞得完全準確.

  以開始提出的問題為例,揭示近似數(shù)的有關(guān)概念

  板書:

  1.精確度

  2.有效數(shù)字:一般地,一個近似數(shù),四舍五入到哪一位,就說這個數(shù)精確到哪一位,這時,從左邊第一個不是0的.數(shù)字起,到精確的數(shù)位止,所有的數(shù)字,都叫做這個數(shù)的有效數(shù)字.

  例如:3.3有二個有效數(shù)字

  3.33有三個有效數(shù)字

  討論:近似數(shù)0.038有幾個有效數(shù)字,0.03080呢?

  【教法說明】通過討論學生明確近似數(shù)的有效數(shù)字需注意的兩點:一是從左邊第一個不是零的數(shù)起;二是從左邊第一個不是零的數(shù)起,到精確的位數(shù)止,所有的數(shù)字,教者在有效數(shù)字概念對應(yīng)的文字底下畫上波浪線,標上①、②

  例1.(出示投影2)

  下列由四舍五入吸到近似數(shù),各精確到哪一位,各有哪幾個有效數(shù)字?

 �。�1)43.8(2).03086(3)2.4萬

  學生口述解題過程,教者板書.

  對于近似數(shù)2.4萬學生又能認為是精確到十分位,這時可組織學生討論近似數(shù)與5.4和近似數(shù)5.4萬中的兩個4的數(shù)位有什么不同,從而得出正確的答案.

  【教法說明】對于疑點問題,通過啟發(fā)討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多.

  鞏固練習見課本122頁練習2、3頁

  例2(出示投影3)

  下列由四舍五入得來的近似數(shù),各精確到哪一位,各有幾個有效數(shù)字?

七年級數(shù)學教案3

  第一章 一元一次不等式組

  1.1 一元一次不等式組

  第1教案

  教學目標

  1. 能結(jié)合實例,了解一元一次不等式組的相關(guān)概念。

  2. 讓學生在探索活動中體會化陌生為熟悉,化復(fù)雜為簡單的“轉(zhuǎn)化”思想方法。

  3. 提高分析問題的'能力,增強數(shù)學應(yīng)用意識,體會數(shù)學應(yīng)用價值。

  教學重、難點

  1..不等式組的解集的概念。

  2.根據(jù)實際問題列不等式組。

  教學方法

  探索方法,合作交流。

  教學過程

  一、 引入課題:

  1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。

  2. 由許多問題受到多種條件的限制引入本章。

  二、 探索新知:

  自主探索、解決第2頁“動腦筋”中的問題,完成書中填空。

  分別解出兩個不等式。

  把兩個不等式解集在同一數(shù)軸上表示出來。

  找出本題的答案。

  三、 抽象:

  教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)

七年級數(shù)學教案4

  1.1 生活中的立體圖形

  〖教學過程:

  一、看一看:(情境創(chuàng)設(shè))

  教師(導(dǎo)語):在我們的生活中,充滿著各種各樣的圖形,其優(yōu)美的結(jié)構(gòu)值得我們鑒賞,其奇妙的性質(zhì)等著我們?nèi)ヌ骄�。請聽來自世界圖形的對話吧。

  設(shè)計:(1)卡通A(代表平面圖形):“我是平面圖形,是大家的老朋友,我家的家庭成員一定比你家多�!�

  (2)卡通B(代表立體圖形):“我是立體圖形,是大家的新朋友,大家知道的并不一定比你少。”

  教師(問):卡通A、B身體各部分是什么圖形?

  通過卡通A、B 的對話,組織學生討論,派代表指著屏幕上圖形說明自己的觀念,讓學生主動參與,激起他們的興趣。培養(yǎng)集體意識,增強團隊精神。

  教師(導(dǎo)語):看來同學們非常善于觀察圖形,不知你們能否用數(shù)學的眼光觀察生活中的圖形?請看來自生活中的立體圖形。

 �。ǔ鍪菊n題):生活中的立體圖形

  音樂響起,屏幕播放錄象。

  二、議一議(課堂討論)

  問題1:你發(fā)現(xiàn)錄象中的這些物體與哪些立體圖形相類似,你能找出與這些立體圖形相類似的物體嗎?

  組織學生圍繞以上問題四人一小組討論,說明自己的觀念,其他小組積極點評,補充,得出常見的立體圖形:圓柱、圓錐、正方體、球、棱錐。

  問題2:比較這些立體圖形,看看相互之間有什么相同點和不同點?

  電腦演示:(1)球體 (2)圓柱 (3)圓錐

  并通過實物展示,引導(dǎo)學生觀察、討論、歸納,得出常見的立體圖形的分類:球體、柱體、椎體。

  電腦演示:由圓柱變成棱柱(三棱柱、四棱柱、五棱柱┉┉),

  問題3 以三棱柱為例,說出一個棱柱的棱數(shù)與底面的邊數(shù),側(cè)面的平面的個數(shù)之間的關(guān)系?

  誘導(dǎo)學生思考:當棱柱的棱柱的'棱數(shù)越來越多時,棱柱就越來越趨向于什么立體圖形?

 �。ㄓ妙愃频姆椒ǎ�,電腦演示:將圓錐演變成棱椎(三棱錐、四棱錐、五棱椎┉),再由棱錐演變成圓錐。

  通過一連串的活動,讓學生掌握從特殊到一般,再有一般到特殊的的認知思想,了解圖形之間的相互聯(lián)系。通過對比,確立分類思想。并用類比的方法,自主的討論、歸納,突出重點、化解難點,在輕松的氛圍中學習。

  三、練一練(評價)

  遵循“由淺入深,循序漸進,由感性到理性”的認知規(guī)律,依據(jù)“主體參與,分層優(yōu)化,及時反饋,激勵評價”的原則,我設(shè)計了以下訓(xùn)練題:

  1、發(fā)給學生一些圖片或?qū)嵨�,說說手中的圖形,是什么立體圖形?沒有發(fā)到的學生,舉出立體圖形的實例。

  盡量讓每個學生都發(fā)言,注意培養(yǎng)學生的語言表達能力。

七年級數(shù)學教案5

  教學目標

  1.使學生理解的意義;

  2.使學生掌握求一個已知數(shù)的;

  3.培養(yǎng)學生的觀察、歸納與概括的能力.

  教學重點和難點

  重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.

  難點:多重符號的化簡.

  課堂教學過程 設(shè)計

  一、從學生原有的認知結(jié)構(gòu)提出問題

  二、師生共同研究的定義

  特點?

  引導(dǎo)學生回答:符號不同,一正一負;數(shù)字相同.

  像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與

  應(yīng)點有什么特點?

  引導(dǎo)學生回答:分別在原點的兩側(cè);到原點的距離相等.

  這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.

  3.0的.是0.

  這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).

  三、運用舉例 變式練習

  例1 (1)分別寫出9與-7的;

  例1由學生完成.

  在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?

  引導(dǎo)學生觀察例1,自己得出結(jié)論:

  數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的

  1.當a=7時,-a=-7,7的是-7;

  2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.

  3.當a=0時,-a=-0,0的是0,因此,-0=0.

  么意思?引導(dǎo)學生回答:-(-8)表示-8的;-(+4)表示+4的;

  例2 簡化-(+3),-(-4),+(-6),+(+5)的符號.

  能自己總結(jié)出簡化符號的規(guī)律嗎?

  括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).

  課堂練習

  1.填空:

  (1)+1.3的是______; (2)-3的是______;

  (5)-(+4)是______的; (6)-(-7)是______的

  2.簡化下列各數(shù)的符號:

  -(+8),+(-9),-(-6),-(+7),+(+5).

  3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?

  -(-8)與+(-8);-(+8)與+(-8).

  四、小結(jié)

  指導(dǎo)學生閱讀教材,并總結(jié)本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.

  五、作業(yè)

  1.分別寫出下列各數(shù)的:

  2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的

  3.填空:

  (1)-1.6是______的,______的是-0.2.

  4.化簡下列各數(shù):

  5.填空:

  (1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;

  (3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

  課堂教學設(shè)計說明

  教學過程 是以《教學大綱》中“重視基礎(chǔ)知識的教學、基本技能的訓(xùn)練和能力的培養(yǎng)”,“數(shù)學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結(jié)合教材特點,以及學生的學習基礎(chǔ)和學習特征而設(shè)計的由于內(nèi)容較為簡單,經(jīng)過教師適當引導(dǎo),便可使學生充分參與認知過程.由于“新”知識與有關(guān)的“舊”知識的聯(lián)系較為直接,在教學中則著力引導(dǎo)觀察、歸納和概括的過程.

  探究活動

  有理數(shù)a、b在數(shù)軸上的位置如圖:

  將a,-a,b,-b,1,-1用“<”號排列出來.

  分析:由圖看出,a>1,-1

  解:在數(shù)軸上畫出表示-a、-b的點:

  由圖看出:-a<-1

  點評:通過數(shù)軸,運用數(shù)形結(jié)合的方法排列三個以上數(shù)的大小順序,經(jīng)常是解這一類問題的最快捷,準確的方法.

七年級數(shù)學教案6

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.

  2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學思想

  學習重難點:探索并掌握直線平行的條件是本課的`重點也是難點.

  一、探索直線平行的條件

  平行線的判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯角也相等.( )

  2.兩條直線被第三條直線所截,如果內(nèi)錯角互補,那么同旁內(nèi)角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.

  五、作業(yè)課本15頁-16頁練習的1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空

  間觀念,推理能力和有條理表達能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

  學習重點:直線平行的條件的應(yīng)用.

  學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.

  一、學習過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習:

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因為∠1=∠4,所以DE∥AB

  B.因為∠2=∠3,所以AB∥EC

  C.因為∠5=∠A,所以AB∥DE

  D.因為∠ADE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

七年級數(shù)學教案7

  一元一次不等式組

  教學目標

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;

  2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗數(shù)學學習的`樂趣,感受一元一次不等式組在解決實際問題中的價值。

  教學難點

  正確分析實際問題中的不等關(guān)系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結(jié)

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?

  在討論或議論的基礎(chǔ)上老師揭示:

  步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。

七年級數(shù)學教案8

  教學目標:

  1、知識與技能

 �。�1)通過實例,感受引入負數(shù)的必要性和合理性,能應(yīng)用正負數(shù)表示生活中具有相反意義的量。

 �。�2)理解有理數(shù)的意義,體會有理數(shù)應(yīng)用的廣泛性。

  2、過程與方法

  通過實例的引入,認識到負數(shù)的產(chǎn)生是來源于生產(chǎn)和生活,會用正、負數(shù)表示具有相反意義的量,能按要求對有理數(shù)進行分類。

  重點、難點:

  1、重點:正數(shù)、負數(shù)有意義,有理數(shù)的意義,能正確對有理數(shù)進行分類。

  2、難點:對負數(shù)的理解以及正確地對有理數(shù)進行分類。

  教學過程:

  一、創(chuàng)設(shè)情景,導(dǎo)入新課

  大家知道,數(shù)學與數(shù)是分不開的,現(xiàn)在我們一起來回憶一下,小學里已經(jīng)學過哪些類型的數(shù)?

  學生答后,教師指出:小學里學過的'數(shù)可以分為三類:自然數(shù)(正整數(shù))、分數(shù)和零(小數(shù)包括在分數(shù)之中),它們都是由于實際需要而產(chǎn)生的

  為了表示一個人、兩只手、……,我們用到整數(shù)1,2,……

  為了表示“沒有人”、“沒有羊”、……,我們要用到0。

  但在實際生活中,還有許多量不能用上述所說的自然數(shù)、零或分數(shù)、小數(shù)表示。

  二、合作交流,解讀探究

  1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數(shù),都記作5℃,就不能把它們區(qū)別清楚。它們是具有相反意義的兩個量。

  現(xiàn)實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的。“運進”和“運出”,其意義是相反的。

  同學們能舉例子嗎?

  學生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?

  待學生思考后,請學生回答、評議、補充。

  教師小結(jié):同學們成了發(fā)明家。甲同學說,用不同顏色來區(qū)分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學說,在數(shù)字前面加不同符號來區(qū)分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數(shù)學家就曾經(jīng)采用不同的顏色來區(qū)分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。

  現(xiàn)在,數(shù)學中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數(shù)前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。

  讓學生用同樣的方法表示出前面例子中具有相反意義的量:

  高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

  教師講解:什么叫做正數(shù)?什么叫做負數(shù)?強調(diào),數(shù)0既不是正數(shù),也不是負數(shù),它是正、負數(shù)的界限,表示“基準”的數(shù),零不是表示“沒有”,它表示一個實際存在的數(shù)量。并指出,正數(shù),負數(shù)的“+”“—”的符號是表示性質(zhì)相反的量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號。

  2、給出新的整數(shù)、分數(shù)概念

  引進負數(shù)后,數(shù)的范圍擴大了。過去我們說整數(shù)只包括自然數(shù)和零,引進負數(shù)后,我們把自然數(shù)叫做正整數(shù),自然數(shù)前加上負號的數(shù)叫做負整數(shù),因而整數(shù)包括正整數(shù)(自然數(shù))、負整數(shù)和零,同樣分數(shù)包括正分數(shù)、負分數(shù)。

  3、給出有理數(shù)概念

  整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。

  4、有理數(shù)的分類

  為了便于研究某些問題,常常需要將有理數(shù)進行分類,需要不同,分類的方法也常常不同根據(jù)有理數(shù)的定義可將有理數(shù)分成兩類:整數(shù)和分數(shù)。有理數(shù)還有沒有其他的分類方法?

  待學生思考后,請學生回答、評議、補充。

  教師小結(jié):按有理數(shù)的符號分為三類:正有理數(shù)、負有理數(shù)和零。在有理數(shù)范圍內(nèi),正數(shù)和零統(tǒng)稱為非負數(shù)。向?qū)W生強調(diào):分類可以根據(jù)不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類。

  三、總結(jié)反思

  引導(dǎo)學生回答如下問題:本節(jié)課學習了哪些基本內(nèi)容?學習了什么數(shù)學思想方法?應(yīng)注意什么問題?

  由于實際生活中存在著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負數(shù)。正數(shù)是大于0的數(shù),負數(shù)就是在正數(shù)前面加上“—”號的數(shù),負數(shù)小于0。0既不是正數(shù),也不是負數(shù),0可以表示沒有,也可以表示一個實際存在的數(shù)量,如0℃。

  四、課后作業(yè):課本P5習題1。1A第1、2、4題。

七年級數(shù)學教案9

  1.教學重點、難點

  重點:列代數(shù)式。

  難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系。

  2.本節(jié)知識結(jié)構(gòu):

  本小節(jié)是在前面代數(shù)式概念引出之后,具體講述如何把實際問題中的數(shù)量關(guān)系用代數(shù)式表示出來。課文先進一步說明代數(shù)式的概念,然后通過由易到難的三組例子介紹列代數(shù)式的方法。

  3.重點、難點分析:

  列代數(shù)式實質(zhì)是實現(xiàn)從基本數(shù)量關(guān)系的語言表述到代數(shù)式的一種轉(zhuǎn)化。列代數(shù)式首先要弄清語句中各種數(shù)量的意義及其相互關(guān)系,然后把各種數(shù)量用適當?shù)淖帜竵肀硎荆詈笤侔褦?shù)及字母用適當?shù)倪\算符號連接起來,從而列出代數(shù)式。

  如:用代數(shù)式表示:比 的2倍大2的數(shù)。

  分析 本題屬于“…比…多(大)…或…比…少(小)”的類型,首先要抓住這幾個關(guān)鍵詞。然后從中找出誰是大數(shù),誰是小數(shù),誰是差。比的2倍大2的數(shù)換個方式敘述為所求的數(shù)比的2倍大2。大和比前邊的量,即所求的數(shù)為大數(shù),那么比和大之間量,即 的2倍則為小數(shù),大后邊的量2即為差。所以本小題是已知小數(shù)和差求大數(shù)。因為大數(shù)=小數(shù)+差,所以所求的數(shù)為:2 +2.

  4.列代數(shù)式應(yīng)注意的.問題:

 �。�1)要分清語言敘述中關(guān)鍵詞語的意義,理清它們之間的數(shù)量關(guān)系。如要注意題中的“大”,“小”,“增加”,“減少”,“倍”,“倒數(shù)”,“幾分之幾”等詞語與代數(shù)式中的加,減,乘,除的運算間的關(guān)系。

 �。�2)弄清運算順序和括號的使用。一般按“先讀先寫”的原則列代數(shù)式。

 �。�3)數(shù)字與字母相乘時數(shù)字寫在前面,乘號省略不寫,字母與字母相乘時乘號省略不寫。

 �。�4)在代數(shù)式中出現(xiàn)除法時,用分數(shù)線表示。

  5.教法建議:

  列代數(shù)式是本章教學的一個難點,學生不容易掌握,這樣老師在上課時,首先要讓學生理解代數(shù)式的本質(zhì),弄清語句中各種數(shù)量的意義及其相互關(guān)系,然后設(shè)計一定數(shù)量的練習題,由易到難,螺旋式上升,使學生能夠正確列出代數(shù)式。

七年級數(shù)學教案10

  教學目標:

  1、使學生在現(xiàn)實情境中初步認識負數(shù),了解負數(shù)的作用,感受運用負數(shù)的需要和方便。

  2、使學生知道正數(shù)和負數(shù)的讀法和寫法,知道0既不是正數(shù),又不是負數(shù)。正數(shù)都大于0,負數(shù)都小于0。

  3、使學生體驗數(shù)學和生活的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生應(yīng)用數(shù)學的能力。

  教學重點:

  初步認識正數(shù)和負數(shù)以及讀法和寫法。

  教學難點:

  理解0既不是正數(shù),也不是負數(shù)。

  教學具準備:

  多媒體課件、溫度計、練習紙、卡片等。

  教學過程:

  一、游戲?qū)耄ǜ惺苌钪械南喾船F(xiàn)象)

  1、游戲:我們來玩?zhèn)€游戲輕松一下,游戲叫做《我反我反我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。

 �、傧蛏峡矗ㄏ蛳驴矗�

 �、谙蚯白�200米(向后走200米)

  ③電梯上升15層(下降15層)。

  2、下面我們來難度大些的,看誰反應(yīng)最快。

 �、傥以阢y行存入了500元(取出了500元)。

 �、谥R競賽中,五(1)班得了20分(扣了20分)。

 �、�10月份,學校小賣部賺了500元。(虧了500元)。

 �、芰闵�10攝氏度(零下10攝氏度)。

  說明什么是相反意義的量(意義正好相反)

  3、談話:周老師的一位朋友喜歡旅游,11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預(yù)報。(天氣預(yù)報片頭)

  二、教學例1

  1、認識溫度計,理解用正負數(shù)來表示零上和零下的溫度。

  課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。

  這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?

  B、現(xiàn)在你能看出南京是多少攝氏度嗎?(是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。

 �。�2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)

  指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結(jié)合課件,突出上海的氣溫在零刻度線以上)。

 �。�3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關(guān)系嗎?(對,北京的'氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?

 �。�4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。

 �、偕虾5臍鉁乇�0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學們所說的4℃也就是+4℃。(板書)

  負號能不能省略不寫?為什么?

 �、诒本┑臍鉁乇�0℃低,是零下4攝氏度。我們可以用—4℃來表示零下4攝氏度(板書—4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。

 �。�5)小結(jié):通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數(shù)可以來表示零上溫度,用—4這樣的數(shù)可以表示零下溫度。

  2、試一試:學生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)

  3、聽一段中央臺的天氣預(yù)報,將你聽到城市的最低和溫度記錄下來。

  4、小結(jié):通過剛才的學習,我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。

  三、學習珠峰、吐魯番盆地的海拔表達方法(P4第2題)

  1、同學們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關(guān)的。最近經(jīng)國家測繪局公布了珠峰的最新海拔高度。老師把有關(guān)網(wǎng)頁帶來了。(課件出現(xiàn)網(wǎng)頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。

  2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態(tài)地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?

  3、我們再來看新疆的吐魯番盆地的海拔圖。(動態(tài)演示吐魯番盆地的海拔情況)。

  你又能從圖上看懂些什么呢?(引導(dǎo)學生交流,回答珠穆朗瑪峰比海平面高8844。43米;吐魯番盆地比海平面低155米)。

  4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?

 �。�1)交流:珠穆朗瑪峰的海拔可以記作:+8844。43米或8844。43米。

  吐魯番盆地的海拔可以記作:—155米。(板書)

 �。�2)小結(jié):以海平面為界線,+8844。43米或8844。43米這樣的數(shù)可以表示海平面以上的高度,—155米這樣的數(shù)可以表示海平面以下的高度。

  四、小組討論,歸納正數(shù)和負數(shù)。

  1、通過剛才的學習,我們收集到了一些數(shù)據(jù)(課件顯示)我們可以用這些數(shù)來表示零上溫度和零下溫度,還可以表示海平面以上的高度和海平面以下的高度。那么你們觀察一下這些數(shù),它們一樣嗎?你們想幫它們分分類嗎?

  2、學生交流、討論。

  3、指出:因為+8844。43也可以寫成8844。43米,所以有正號和沒正號都可以歸于一類。提出疑問:0到底歸于哪一類?(引導(dǎo)學生爭論,各自發(fā)表意見)

 �、偃绻纪夥秩惖�,老師可以出難題:我覺得0可以分在4它們一類啊,你們怎么來說服我?

  ②如果有學生發(fā)表分三類的,有的分兩類的,可以引導(dǎo)他們互相爭論。

  4、小結(jié):什么是正數(shù)、負數(shù)?

  師:(結(jié)合圖)我們從溫度計上觀察,以0℃為界限線,0℃以上的溫度用正幾表示,0℃以下的溫度用負幾表示。同樣,以海平面為界線,高于海平面的高度我們用正幾來表示,低于海平面我們用負幾表示。0是正負數(shù)的分界點,把正數(shù)和負數(shù)分開了,它誰都不屬于。但對于正數(shù)和負數(shù)來說,它卻必不可少。我們把以前學過的,象+4、16、3/8、0。5、+8844。43等這樣的數(shù)叫做正數(shù);象—4、—155等這樣的數(shù)我們叫做負數(shù);而0既不是正數(shù),也不是負數(shù)。(板書)這節(jié)課我們就和大家一起來認識正數(shù)和負數(shù)。(板書:認識正數(shù)和負數(shù))

  五、聯(lián)系生活,鞏固練習

  1、練習一第2、3題

  2、你知道嗎:水沸騰時的溫度是xxxx。水結(jié)冰時的溫度是xxxx。地球表面的最低溫度是。

  3、討論生活中的正數(shù)和負數(shù)

  (1)存折:這里的—800表示什么意思?(以原來的錢為標準,取出了800元記作—800;存入了1200元記作1200元,還可以記作+1200元)

  (2)電梯:這里的1和—1表示什么意思?(以地平面為界線,地平面以上一層我們用1或+1來表示,—1就表示地下一層)。老師現(xiàn)在要到33層應(yīng)該按幾��?要到地下3層呢?

  六、課堂小結(jié)

  這節(jié)課我們一起認識了正數(shù)和負數(shù)。在我們的生活中,零攝氏度以上和零攝氏度以下,海平面以上和海平面以下,得分與失分等都具有相反的意義,我們都可以用正數(shù)和負數(shù)來表示。

七年級數(shù)學教案11

  教學目標:

  1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點靈活地選擇解法。

  2、過程與方法:經(jīng)歷一元一次方程一般解法的探究過程,理解等式基本性質(zhì)在解方程中的作用,學會通過觀察,結(jié)合方程的特點選擇合理的思考方向進行新知識探索。

  3、情感、態(tài)度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的過程中,體驗“化歸”的思想。

  教學重難點:

  重點:解一元一次方程的基本步驟和方法。

  難點:含有分母的一元一次方程的解題方法。

  教學過程:

  一、新課導(dǎo)入:

  請同學們和老師一起解方程:

  并回答:解一元一次方程的一般步驟和最終的目的是什么?

  二、講授新課

  請給同學們介紹紙草書(P95)。

  問題:一個數(shù),它的三分之二,它的.一半,它的七分之一,它的全部,加起來總共是33.試問這個

  數(shù)是多少?

  并引入讓同學運用設(shè)未知數(shù)的方法,列出相應(yīng)的方程。

  并回答:這個方程和我們以前學習的方程有什么不同?

  同學們和老師一起完成解上述方程,并引入去分母。

  例1、

  例2、

  活動:同學們,解一元一次方程的步驟有哪些?要注意哪些?

  看一看你會不會錯:

  (1)解方程:

  (2)解方程:

  典型例題:解方程:

  想一想:去分母時要注意什么問題?

  (1)方程兩邊每一項都要乘以各分母的最小公倍數(shù)

  (2)去分母后如分子中含有兩項,應(yīng)將該分子添上括號

  選一選:

  練一練:當m為何值時,整式和的值相等?

  議一議:如何解方程:

  注意區(qū)別:

  1、把分母中的小數(shù)化為整數(shù)是利用分數(shù)的基本性質(zhì),是對單一的一個分數(shù)的分子分母同乘或除以一個不為0的數(shù),而不是對于整個方程的左右兩邊同乘或除以一個不為0的數(shù)。

  2、而去分母則是根據(jù)等式性質(zhì)2,對方程的左右兩邊同乘或除以一個不為0的數(shù),而不是對于一個單一的分數(shù)。

  課堂小結(jié):

 �。�1)怎樣去分母?應(yīng)在方程的左右兩邊都乘以各分母的最小公倍數(shù)。

  有沒有疑問:不是最小公倍數(shù)行不行?

 �。�2)去分母的依據(jù)是什么?

  等式性質(zhì)2

 �。�3)去分母的注意點是什么?

  1、去分母時等式兩邊各項都要乘以最小公倍數(shù),不可以漏乘。

  2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個整體應(yīng)加括號。

  (4)解一元一次方程的一般步驟:

  布置作業(yè):P98,習題3.3第3題

  補充作業(yè):解方程:

  (1)

 �。�2)

  板書設(shè)計:

  教學反思:

七年級數(shù)學教案12

  一.教學目標:

  1.認知目標:

  1)了解二元一次方程組的概念。

  2)理解二元一次方程組的解的概念。

  3)會用列表嘗試的方法找二元一次方程組的解。

  2.能力目標:

  1)滲透把實際問題抽象成數(shù)學模型的思想。

  2)通過嘗試求解,培養(yǎng)學生的探索能力。

  3.情感目標:

  1)培養(yǎng)學生細致,認真的學習習慣。

  2)在積極的教學評價中,促進師生的情感交流。

  二.教學重難點

  重點:二元一次方程的意義及二元一次方程的解的概念。

  難點:把一個二元一次方程形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。

  三.教學過程

  (一)創(chuàng)設(shè)情景,引入課題

  1.本班共有40人,請問能確定男女生各幾人嗎?為什么?

 �。�1)如果設(shè)本班男生x人,女生y人,用方程如何表示?(x+y=40)

 �。�2)這是什么方程?根據(jù)什么?

  2.男生比女生多了2人。設(shè)男生x人,女生y人.方程如何表示? x,y的值是多少?

  3.本班男生比女生多2人且男女生共40人.設(shè)該班男生x人,女生y人。方程如何表示?

  兩個方程中的x表示什么?類似的兩個方程中的y都表示?

  像這樣,同一個未知數(shù)表示相同的量,我們就應(yīng)用大括號把它們連起來組成一個方程組。

  4.點明課題:二元一次方程組。

  (設(shè)計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學)

 �。ǘ┨骄啃轮毩曥柟�

  1.二元一次方程組的概念

 �。�1)請同學們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。

  [讓學生看書,引起他們對教材重視。找關(guān)鍵詞,加深他們對概念的了解.]

  (2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。

 �、賦2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

  (設(shè)計意圖:這一環(huán)節(jié)是本課設(shè)計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)的思考”,進而完善血生對二元一次方程概念的理解。)

  2.二元一次方程組的解的概念

 �。�1)由學生給出引例的答案,教師指出這就是此方程組的解。

  (2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>

  方程x+y=0的解,方程2x+3y=2的解,方程組的解。

  (3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

 �。�4)練習:已知是方程組的解,求a,b的.值。

 �。ㄈ┖献魈剿�,嘗試求解

  現(xiàn)在我們一起來探索如何尋找方程組的解呢?

  1.已知兩個整數(shù)x,y,試找出方程組的解.

  學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。

  一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試.

 �。ㄔO(shè)計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學活動的經(jīng)驗)

  2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。

  (1) 設(shè)該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關(guān)于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。

  由學生獨立完成,并分析講解。

  3.例 已知方程3X+2Y=10

 �、女擷=2時,求所對應(yīng)的Y 的值;

 �、迫∫粋€你自己喜歡的數(shù)作為X的值,求所對應(yīng)的Y的值;

 �、怯煤琗的代數(shù)式表示Y;

 �、扔煤琘 的代數(shù)式表示X;

 �、僧擷=-2,0 時,所對應(yīng)的Y值是多少;

 �。ㄔO(shè)計意圖:此處設(shè)計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復(fù)步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導(dǎo)學生體會“用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程。)

  (四)課堂小結(jié),布置作業(yè)

  1.這節(jié)課學哪些知識和方法?

  2.你還有什么問題或想法需要和大家交流?

  3.教材P82

  教學設(shè)計說明:

  1.本課設(shè)計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

  2.“讓學生成為課堂的真正主體”是本課設(shè)計的主要理念。由學生給出數(shù)據(jù),得出結(jié)果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導(dǎo)者。

  3.本課在設(shè)計時對教材也進行了適當改動。例題方面考慮到數(shù)碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎(chǔ),為學生今后的進一步學習做好鋪墊。

七年級數(shù)學教案13

  一、教學內(nèi)容分析

  1。2有理數(shù)1。2。2數(shù)軸。這一節(jié)是初中數(shù)學中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學學習和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學習直角坐標系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學生理解數(shù)學、學好數(shù)學的方法。日常生活中帶見的用溫度計度量溫度,已為學習數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學習方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學生領(lǐng)悟分類思想的基礎(chǔ)。

  二、學生學習情況分析

 �。�1)知識掌握上,七年級的學生剛剛學習有理數(shù)中的正負數(shù),對正負數(shù)的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;

 �。�2)學生學習本節(jié)課的知識障礙。學生對數(shù)軸概念和數(shù)軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學中教師應(yīng)予以簡單明白、深入淺出的分析;

 �。�3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應(yīng)抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生的主動性。

  三、設(shè)計思想

  從學生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學概念,當然對初學者不宜講的過多,但適當引導(dǎo)學生進行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。

  四、教學目標

 �。ㄒ唬┲R與技能

  1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

  2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。

 �。ǘ┻^程與方法

  1、使學生受到把實際問題抽象成數(shù)學問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學的意識。

  2、對學生滲透數(shù)形結(jié)合的思想方法。

 �。ㄈ┣楦�、態(tài)度與價值觀

  1、使學生初步了解數(shù)學來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點。

  2、通過畫數(shù)軸,給學生以圖形美的教育,同時由于數(shù)形的結(jié)合,學生會得到和諧美的享受。

  五、教學重點及難點

  1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。

  2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。

  六、教學建議

  1、重點、難點分析

  本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。

  2、知識結(jié)構(gòu)

  有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學問題的研究,數(shù)形結(jié)合是理解數(shù)學、學好數(shù)學的方法,本課知識要點如下:

  定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸

  三要素原點正方向單位長度

  應(yīng)用數(shù)形結(jié)合

  七、學法引導(dǎo)

  1、教學方法:根據(jù)教師為主導(dǎo),學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學方法。

  2、學生學法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習。

  八、課時安排

  1課時

  九、教具學具準備

  電腦、投影儀、三角板

  十、師生互動活動設(shè)計

  講授新課

 �。ǔ鍪就队�1)

  問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。

  師:三個溫度計所表示的溫度是多少?

  生:2℃,—5℃,0℃。

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)

  師:我們能否用類似的圖形表示有理數(shù)呢?

  師:這種表示數(shù)的圖形就是今天我們要學的內(nèi)容—數(shù)軸(板書課題)。

  師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀

  數(shù),用直線上的點表示正數(shù)、負數(shù)和零。具體方法如下

 �。ㄟ呎f邊畫):

  1。畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2。規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3。選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為—1,—2,—3,…

  師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  讓學生觀察畫好的直線,思考以下問題:

 �。ǔ鍪就队�2)

  (1)原點表示什么數(shù)?

  (2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

 �。�3)表示+2的`點在什么位置?表示—1的點在什么位置?

 �。�4)原點向右0。5個單位長度的A點表示什么數(shù)?

  原點向左1。5個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義。

  師:在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單

  位長度的直線叫做數(shù)軸。

  進而提問學生:在數(shù)軸上,已知一點P表示數(shù)—5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是—5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可。

  【教法說明】通過“觀察—類比—思考—概括—表達”展現(xiàn)知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領(lǐng)會數(shù)學思想和思維方法,并有意識地訓(xùn)練學生歸納概括和口頭表達能力。

  師生同步畫數(shù)軸,學生概括數(shù)軸三要素,師出示投影,生動手動腦練習

  嘗試反饋,鞏固練習

 �。ǔ鍪就队�3)。畫出數(shù)軸并表示下列有理數(shù):

  1、1。5,—2。2,—2。5,,,0。

  2。寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):

  請大家回答下列問題:

 �。ǔ鍪就队�4)

  (1)有人說一條直線是一條數(shù)軸,對不對?為什么?

 �。�2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  【教法說明】此組練習的目的是鞏固數(shù)軸的概念。

  十一、小結(jié)

  本節(jié)課要求同學們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究。

  十二、課后練習習題1。2第2題

  十三、教學反思

  1、數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

  2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學思想方法。

  3、注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導(dǎo)學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。

七年級數(shù)學教案14

  內(nèi)容:整式的乘法—單項式乘以多項式 P58-59

  課型:新授 時間:

  學習目標:

  1、在具體情景中,了解單項式和多項式相乘的意義。

  2、在通過學生活動中,理解單項式和多項式相乘的法則,會用它們進行計算。

  3、培養(yǎng)學生有條理的思考和表達能力。

  學習重點:單項式乘以多項式的法則

  學習難點:對法則的'理解

  學習過程

  1.學習準備

  1.敘述單項式乘以單項式的法則

  2.計算

  (1)(- a2b) ?(2ab)3=

  (2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)

  3、舉例說明乘法分配律的應(yīng)用。

  2.合作探究

  (一)獨立思考,解決問題

  1、 問題: 一個施工隊修筑一條路面寬為n m的公路,第一天修筑 a m長,第二天修筑長 b m,第三天修筑長 c m,3天工修筑路面的面積是多少?

  結(jié)合圖形,完成填空。

  算法一:3天共修筑路面的總長為(a+b+c)m,因為路面的寬為bm,所以3

  天共修筑路面 m2.

  算法二:先分別計算每天修筑路面的面積,然后相加,則3天修路面 m2.

  因此,有 = 。

  3.你能用字母表示乘法分配律嗎?

  4.你能嘗試單項式乘以多項式的法則嗎?

  (二)師生探究,合作交流

  1、例3 計算:

 �。�1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)

  2、練一練

  (1)5x(3x+4) (2) (5a2? a+1)(-3a)

  (3)x(x2+3)+x2(x-3)-3x(x2?x-1)

  (4)(?a)(-2ab)+3a(ab-b-1))

  (三)學習

  對照學習目標,通過預(yù)習,你覺得自己有哪些方面的收獲?有什么疑惑?

  (四)自我測試

  1、教科書P59 練習 3,結(jié)合解題,單項式乘以多項式的幾何意義。

  2、判斷題

  (1)-2a(3a-4b) =-6a2-8ab ( )

  (2) (3x2-xy-1) ? x =x3 -x2y-x ( )

  (3)m2- (1- m) = m2- - m ( )

  3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )

  A. -1 B. 0 C. 1 D. 無法確定

  4、計算(20xx 賀州中考)

 �。�-2a)?( a3 -1) =

  5、(3m)2(m2+mn-n2)=

  (五)應(yīng)用拓展

  1、計算

  (1)2a(9a2-2a+3)-(3a2) ?(2a-1)

  (2)x(x-3)+2x(x-3)=3(x2-1)

  2、若一個梯形的上底長(4m+3n)cm,下底長(2m+n)cm,高為3m2n cm,求此梯形的面積。

  3、一塊邊長為xcm的正方形地磚,因需要被裁掉一塊2cm寬的長條,為剩下部分面積是多少?

七年級數(shù)學教案15

  教學目標

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;

  2, 了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;

  3, 體驗分類是數(shù)學上的常用處理問題的方法。

  教學難點 正確理解分類的標準和按照一定的標準進行分類

  知識重點 正確理解有理數(shù)的概念

  教學過程(師生活動) 設(shè)計理念

  探索新知 在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).

  問題1:觀察黑板上的9個數(shù),并給它們進行分類.

  學生思考討論和交流分類的情況.

  學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.

  例如,

  對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))

  通過教師的引導(dǎo)、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.

  按照書本的'說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

  學生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導(dǎo)學生去體會

  練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.

  2,教科書第10頁練習.

  此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.

  把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.

  思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?

  也可以教師說出一些數(shù),讓學生進行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?

  教學時,要讓學生總結(jié)已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇?dǎo),逐步得到如下的分類表。

  有理數(shù) 這個分類可視學生的程度確定是否有必要教學。

  應(yīng)使學生了解分類的標準不一樣時,分類的結(jié)果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結(jié)與作業(yè)

  課堂小結(jié) 到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁習題1.2第1題

  2, 教師自行準備

  本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)

  1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應(yīng)引起足夠的重視.關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學生的情況進行。

【七年級數(shù)學教案】相關(guān)文章:

七年級上數(shù)學教案02-07

七年級人教版數(shù)學教案11-03

七年級數(shù)學教案08-19

七年級下冊數(shù)學教案08-26

七年級數(shù)學教案【精】01-06

【薦】七年級數(shù)學教案12-19

七年級數(shù)學教案【熱】12-20

七年級數(shù)學教案【熱門】01-07

七年級數(shù)學教案【推薦】01-07

七年級數(shù)學教案數(shù)軸12-29