丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網>教案大全>數(shù)學教案>七年級數(shù)學教案>七年級數(shù)學教案

七年級數(shù)學教案

時間:2023-01-06 17:15:23 七年級數(shù)學教案 我要投稿

七年級數(shù)學教案【精】

  作為一名老師,往往需要進行教案編寫工作,教案是教學活動的總的組織綱領和行動方案。來參考自己需要的教案吧!以下是小編收集整理的七年級數(shù)學教案,希望對大家有所幫助。

七年級數(shù)學教案【精】

七年級數(shù)學教案1

  教學目標:

  1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關系;

  2,會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);

  3,感受在特定的條件下數(shù)與形是可以相互轉化的,體驗生活中的數(shù)學。

  教學難點:

  數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)

  知識重點

  教學過程(師生活動) 設計理念

  設置情境

  引入課題

  教師通過實例、課件演示得到溫度計讀數(shù).

  問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

  (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

  (小組討論,交流合作,動手操作) 創(chuàng)設問題情境,激發(fā)學生的學習熱情,發(fā)現(xiàn)生活中的數(shù)學。

  探究新知

  教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?

  讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?

  從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結合思想;只描述數(shù)軸特征即可,不用特別強調數(shù)軸三要求。

  從游戲中學數(shù)學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規(guī)定第4個同學為原點,由西向東為正方向,每個同學都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數(shù)字”,如果規(guī)定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數(shù)軸概念的理解

  尋找規(guī)律

  歸納結論

  問題3:

  1, 你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?

  2, 如果給你一些數(shù),你能相應地在數(shù)軸上找出它們的準確位置嗎?如果給你數(shù)軸上的點,你能讀出它所表示的數(shù)嗎?

  3, 哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?

  4, 每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?

  (小組討論,交流歸納)

  歸納出一般結論,教科書第12的歸納。 這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

  鞏固練習

  教科書第12頁練習

  小結與作業(yè)

  課堂小結

  請學生總結:

  1, 數(shù)軸的三個要素;

  2, 數(shù)軸的作以及數(shù)與點的.轉化方法。

  本課作業(yè)

  1, 必做題:教科書第18頁習題1.2第2題

  2,選做題:教師自行安排

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1, 數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

  2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。

  3, 注意從學生的知識經驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。

七年級數(shù)學教案2

  教學目標

  讓學生熟練地進行有理數(shù)加減混合運算,并利用運算律簡化運算.

  教學重點和難點

  重點:加減運算法則和加法運算律.

  難點:省略加號與括號的代數(shù)和的計算.

  課堂教學過程

  設計

  一、從學生原有認知結構提出問題

  什么叫代數(shù)和?說出-6+9-8-7+3兩種讀法.

  二、講授新課

  1.計算下列各題:

  2.計算:

  (1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;

  (7)-6-8-2+3.54-4.72+16.46-5.28;

  3.當a=13,b=-12.1,c=-10.6,d=25.1時,求下列代數(shù)式的值:

  (1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;

  (5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;

  (9)(a-c)-(b-d);(10)a-c-b+d.

  請同學們觀察一下計算結果,可以發(fā)現(xiàn)什么規(guī)律?

  a-(b+c)=a-b-c;

  a-(b+c+d)=a-b-c-d;

  a-(b-d)=a-b+d;

  (a+b)-(c+d)=a+b-c-d;

  (a-c)-(b-d)=a-c-b+d.

  括號前是“-”號,去括號后括號里各項都改變了符號;括號前是“+”號(沒標符號當然也是省略了“+”號)去括號后各項都不變.

  4.用較簡便方法計算:

  (4)-16+25+16-15+4-10.

  三、課堂練習

  1.判斷題:在下列各題中,正確的在括號中打“√”號,不正確的在括號中打“×”號:

  (1)兩個數(shù)相加,和一定大于任一個加數(shù).()

  (2)兩個數(shù)相加,和小于任一個加數(shù),那么這兩個數(shù)一定都是負數(shù).()

  (3)兩數(shù)和大于一個加數(shù)而小于另一個加數(shù),那么這兩數(shù)一定是異號.()

  (4)當兩個數(shù)的符號相反時,它們差的絕對值等于這兩個數(shù)絕對值的和.()

  (5)兩數(shù)差一定小于被減數(shù).()

  (6)零減去一個數(shù),仍得這個數(shù).()

  (7)兩個相反數(shù)相減得0.()

  (8)兩個數(shù)和是正數(shù),那么這兩個數(shù)一定是正數(shù).()

  2.填空題:

  (1)一個數(shù)的絕對值等于它本身,這個數(shù)一定是xxxxxx;一個數(shù)的倒數(shù)等于它本身,這個數(shù)一定是xxxxxx;一個數(shù)的相反數(shù)等于它本身,這個數(shù)是xxxxxx.

  (2)若a<0,那么a和它的相反數(shù)的差的絕對值是xxxxxx.

  (3)若|a|+|b|=|a+b|,那么a,b的關系是xxxxxx.

  (4)若|a|+|b|=|a|-|b|,那么a,b的關系是xxxxxx.

  (5)-[-(-3)]=xxxxxx,-[-(+3)]=xxxxxx.

  這兩組題要求學生自己分析,判斷題中錯的應舉出反例,同時要求符號語言與文字敘述語言能夠互化.

  四、作業(yè)

  1.當a=2.7,b=-3.2,c=-1.8時,求下列代數(shù)式的值:

  (1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.

  2.分別根據(jù)下列條件求代數(shù)式x-y-z+w的值:

  (1)x=-3,y=-2,z=0,w=5;

  (2)x=0.3,y=-0.7,z=1.1,w=-2.1;

  3.已知3a=a+a+a,分別根據(jù)下列條件求代數(shù)式3a的值:

  (1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.

  4.(1)當b>0時,a,a-b,a+b,哪個?哪個最小?

  (2)當b<0時,a,a-b,a+b,哪個?哪個最小?

  5.判斷題:對的'在括號里打“√”,錯的在括號里打“×”,并舉出反例.

  (1)若a,b同號,則a+b=|a|+|b|.()

  (2)若a,b異號,則a+b=|a|-|b|.()

  (3)若a<0、b<0,則a+b=-(|a|+|b|).()

  (4)若a,b異號,則|a-b|=|a|+|b|.()

  (5)若a+b=0,則|a|=|b|.()

  6.計算:(能簡便的應當盡量簡便運算)

  課堂教學設計說明

  1.本課時是習題課.通過習題,復習、鞏固有理數(shù)的加、減運算以及加減混合運算的法則與技能.講課前教師要認真總結、分析學生在進行有理數(shù)加、減混合運算時常犯的錯誤,以便在這節(jié)課分析習題時,有意識地幫助學生改正.

  2.關于“去括號法則”,只要求學生了解,并不要求追究所以然.

七年級數(shù)學教案3

  第一章 一元一次不等式組

  1.1 一元一次不等式組

  第1教案

  教學目標

  1. 能結合實例,了解一元一次不等式組的相關概念。

  2. 讓學生在探索活動中體會化陌生為熟悉,化復雜為簡單的“轉化”思想方法。

  3. 提高分析問題的'能力,增強數(shù)學應用意識,體會數(shù)學應用價值。

  教學重、難點

  1..不等式組的解集的概念。

  2.根據(jù)實際問題列不等式組。

  教學方法

  探索方法,合作交流。

  教學過程

  一、 引入課題:

  1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。

  2. 由許多問題受到多種條件的限制引入本章。

  二、 探索新知:

  自主探索、解決第2頁“動腦筋”中的問題,完成書中填空。

  分別解出兩個不等式。

  把兩個不等式解集在同一數(shù)軸上表示出來。

  找出本題的答案。

  三、 抽象:

  教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)

七年級數(shù)學教案4

  教學目標

  1、熟練掌握加減消元法;

  2、能根據(jù)方程組的特點選擇合適的方法解方程組,

  3、通過分析實際問題中的數(shù)量關系,建立方程解決問題,進一步認識方程模型的重要性.

  教學難點

  教材中例4的數(shù)量關系較復雜,是本課的難點。

  知識重點能根據(jù)方程組的特點選擇合適的方法解方程組。

  教學過程

  (師生活動)設計理念

  創(chuàng)設情境

  1、復2、習提問

  解二元一次方程組有哪幾種方法?它們的實質是什么?

  2、播放動畫《西游記》場景,配數(shù)學詩.

  悟空順風探妖蹤,千里只行四分鐘.

  歸時四分行六百,風速多少才稱雄?

  請一名學生解釋詩歌大意:孫悟空順風去查妖精的行蹤,僅用4分鐘就飛躍千里.逆風返回時4分鐘走了600里,問風速是多少?

  學生思考,根據(jù)題中等量關系,列出方程.

  設悟空行走速度為x里/分,風速為y里/分,則

  你會解這個方程組嗎?引例生動活波,激發(fā)學生的探究欲望,讓學生在看、聽、想的過程中愉悅地獲得數(shù)學知識.

  探究新知學生獨立完成后.在班級里交流解法.

  解法一:①+②,消去y,得8x=1600

  ∴x=200,代人①,得y=50

  原方程組的解為

  解法二:①-②,消去x。以下略.

  解法三:整體代入.由①得:4x=1000-4y,代入②,消去x.

  同理,也可消去y.

  解法四:化簡原方程組為,再利用加減消元,或代入消元均可.

  反思:試著從各個角度比較“代入法”與“加減法”的共同點與不同點.(同學間相互交流)它們各適用于什么情況?

  在學生回答的基礎上,教師指出:當方程組中某一個未知數(shù)的系數(shù)絕對值是1或一個方程的常數(shù)項為零時,用代入法較方便;當兩個方程中,同一個未知數(shù)的系數(shù)絕對值相等或成整倍數(shù)時,用加減法較方便.

  練習1:根據(jù)方程組的特點選擇更適合它的解法.你會怎樣解呢?(第1,2小題完成后再出示第3小題.)

  (1)

  (2)

  (3)

  第1小題用代入法,第2小題用加減法,都很明確,第3小題有爭議.全班分成兩部分.1、2大組用代入法做,3、4大組用加減法做.比較兩解法的簡便程度.

  反思:當方程組中任一個未知數(shù)的系數(shù)絕對值不是1,且不成倍數(shù)關系時,一般經過變形利用加減法會使解法更簡單.嘗試不同的解法,培養(yǎng)學生的發(fā)散性思維和擇優(yōu)意識。

  解二元一次方程組不管采用哪種方法,都可以獲得它的解,但根據(jù)題目形式的特點,選擇不同的方法可以減少彎路,加快速度使解題過程簡潔提高正確率.

  實際應用教材第109頁例4.

  2臺大收割機和5臺小收割機工作2小時收割小麥

  3.6公頃,3臺大收割機和2臺小收割機工作5小時收割小麥8公頃,問:1臺大收割機和1臺小收割機1小時各收割小麥多少公頃?

  分析:

  問題1.列二元一次方程組解應用題的關鍵是什么?

  (找出兩個等量關系)

  問題2.你能找出本題的等量關系嗎?

  2臺大收割機2小時的工作量+5臺小收割機2小時的工作量=3.6

  3臺大收割機5小時的工作量+2臺小收割機5小時的工作量=8

  問題3.怎么表示2臺大收割機2小時的工作量呢?

  設1臺大收割機1小時收割小麥x公頃,則

  2臺大收割機1小時收割小麥_公頃,

  2臺大收割機2小時收割小麥_公頃.

  現(xiàn)在你能列出方程了嗎?

  解后反思:應用題中,如何化解較復雜數(shù)量關系?

  練習2:教科書第111頁練習第3題應用題.體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型。

  小結與作業(yè)

  小結提高在學生暢所欲言話收獲的基礎上,通過老師進行補充的方式進行。

  本節(jié)課學習了哪些內容?你有哪些收獲?

  布置作業(yè)

  8、做題:教科書112頁習題8.2第5、7題。

  9、選做題:教科書112頁習題8.2第8題。

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1、能根據(jù)教材編寫思路,遵循學生的'心理特點,創(chuàng)造性使用新教材中的問題情境(引入與111頁練習3屬同種數(shù)學模型),把教材中不動的問題情境轉化為動的問題情境.

  2、真正把課堂還給了學生,使學生真正地變?yōu)檎n堂學習的主人,老師只是學生學習的引導者和組織者.由于學生的個體差異,思維方式的不同,為了給學生創(chuàng)造個性化的學習空間,鼓勵學生們用自己的方式去學習,把學習的主動權還給他們,讓他們自己去探究不同的解題方法.通過例題分析、啟發(fā)提問、集體討論等形式,使學生能準確而迅速地確定解題方法從而突出了本課的重點、難點—選擇適當方法求解二元一次方程組.

七年級數(shù)學教案5

  教學目標:

  1.了解正數(shù)與負數(shù)是實際生活的需要.

  2.會判斷一個數(shù)是正數(shù)還是負數(shù).

  3.會用正負數(shù)表示互為相反意義的量.

  教學重點:會判斷正數(shù)、負數(shù),運用正負數(shù)表示具有相反意義的量,理解表示具有相反意義的量的意義.

  教學難點:負數(shù)的引入.

  教與學互動設計:

  (一)創(chuàng)設情境,導入新課

  課件展示珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況.

  (二)合作交流,解讀探究

  舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7℃和零下5℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等.

  想一想以上都是一些具有相反意義的量,你能用小學算術中的數(shù)來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?

  為了用數(shù)表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規(guī)定為正的`,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規(guī)定為負的,正的量用算術里學過的數(shù)表示,負的量用學過的數(shù)前面加上“-”(讀作負)號來表示(零除外).

  活動每組同學之間相互合作交流,一同學說出有關相反意義的兩個量,由其他同學用正負數(shù)表示.

  討論什么樣的數(shù)是負數(shù)?什么樣的數(shù)是正數(shù)?0是正數(shù)還是負數(shù)?自己列舉正數(shù)、負數(shù).

  總結正數(shù)是大于0的數(shù),負數(shù)是在正數(shù)前面加“-”號的數(shù),0既不是正數(shù),也不是負數(shù),是正數(shù)與負數(shù)的分界點.

  (三)應用遷移,鞏固提高

  【例1】舉出幾對具有相反意義的量,并分別用正、負數(shù)表示.

  【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等.

  【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02g,記作+0.02g,那么-0.03g表示什么?

  【例3】某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正.例如,9:15記為-1,10:45記為1等等.依此類推,上午7:45應記為()

  A.3B.-3C.-2.5D.-7.45

  【點撥】讀懂題意是解決本題的關鍵.7:45與10:00相差135分鐘.

  (四)總結反思,拓展升華

  為了表示現(xiàn)實生活中具有相反意義的量引進了負數(shù).正數(shù)就是我們過去學過(除零外)的數(shù),在正數(shù)前加上“-”號就是負數(shù),不能說“有正號的數(shù)是正數(shù),有負號的數(shù)是負數(shù)”.另外,0既不是正數(shù),也不是負數(shù).

  1.下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):

  星期日一二三四五六

  (元)+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小張一共用掉了多少錢?存進了多少錢?

  (2)儲蓄罐中的錢與原來相比是多了還是少了?

  (3)如果不用正、負數(shù)的方法記賬,你還可以怎樣記賬?比較各種記賬的優(yōu)劣.

  2.數(shù)學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4.用“+”表示“站”,“-”(負號)表示“蹲”.

  (1)由一個同學大聲喊:+1,-2,-3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:-1,-2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;

  (2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲.

  (五)課堂跟蹤反饋

  夯實基礎

  1.填空題:

  (1)如果節(jié)約用水30噸記為+30噸,那么浪費20噸記為噸.

  (2)如果4年后記作+4年,那么8年前記作年.

  (3)如果運出貨物7噸記作-7噸,那么+100噸表示.

  (4)一年內,小亮體重增加了3kg,記作+3kg;小陽體重減少了2kg,則小陽增加了.

  2.中午12時,水位低于標準水位0.5米,記作-0.5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0.5米.

  (1)用正數(shù)或負數(shù)記錄下午1時和下午5時的水位;

  (2)下午5時的水位比中午12時水位高多少?

  提升能力

  3.糧食每袋標準重量是50公斤,現(xiàn)測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正數(shù)表示,請用正數(shù)和負數(shù)記錄甲、乙、丙三袋糧食的超重數(shù)和不足數(shù).

  (六)課時小結

  1.與以前相比,0的意義又多了哪些內容?

  2.怎樣用正數(shù)和負數(shù)表示具有相反意義的量?(用正數(shù)表示其中具有一種意義的量,另一種量用負數(shù)表示)

七年級數(shù)學教案6

  教學目標:

  1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點靈活地選擇解法。

  2、過程與方法:經歷一元一次方程一般解法的探究過程,理解等式基本性質在解方程中的作用,學會通過觀察,結合方程的特點選擇合理的思考方向進行新知識探索。

  3、情感、態(tài)度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的`過程中,體驗“化歸”的思想。

  教學重難點:

  重點:解一元一次方程的基本步驟和方法。

  難點:含有分母的一元一次方程的解題方法。

  教學過程:

  一、新課導入:

  請同學們和老師一起解方程:

  并回答:解一元一次方程的一般步驟和最終的目的是什么?

  二、講授新課

  請給同學們介紹紙草書(P95)。

  問題:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33.試問這個

  數(shù)是多少?

  并引入讓同學運用設未知數(shù)的方法,列出相應的方程。

  并回答:這個方程和我們以前學習的方程有什么不同?

  同學們和老師一起完成解上述方程,并引入去分母。

  例1、

  例2、

  活動:同學們,解一元一次方程的步驟有哪些?要注意哪些?

  看一看你會不會錯:

  (1)解方程:

  (2)解方程:

  典型例題:解方程:

  想一想:去分母時要注意什么問題?

  (1)方程兩邊每一項都要乘以各分母的最小公倍數(shù)

  (2)去分母后如分子中含有兩項,應將該分子添上括號

  選一選:

  練一練:當m為何值時,整式和的值相等?

  議一議:如何解方程:

  注意區(qū)別:

  1、把分母中的小數(shù)化為整數(shù)是利用分數(shù)的基本性質,是對單一的一個分數(shù)的分子分母同乘或除以一個不為0的數(shù),而不是對于整個方程的左右兩邊同乘或除以一個不為0的數(shù)。

  2、而去分母則是根據(jù)等式性質2,對方程的左右兩邊同乘或除以一個不為0的數(shù),而不是對于一個單一的分數(shù)。

  課堂小結:

 。1)怎樣去分母?應在方程的左右兩邊都乘以各分母的最小公倍數(shù)。

  有沒有疑問:不是最小公倍數(shù)行不行?

 。2)去分母的依據(jù)是什么?

  等式性質2

  (3)去分母的注意點是什么?

  1、去分母時等式兩邊各項都要乘以最小公倍數(shù),不可以漏乘。

  2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個整體應加括號。

 。4)解一元一次方程的一般步驟:

  布置作業(yè):P98,習題3.3第3題

  補充作業(yè):解方程:

 。1)

 。2)

  板書設計:

  教學反思:

七年級數(shù)學教案7

  教學目標

  1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;

  2.能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學生掌握多個有理數(shù)相乘的積的符號法則;

  3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應用乘法交換律、結合律、分配律簡化運算過程;

  4.通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學生的運算能力;

  5.本節(jié)課通過行程問題說明法則的合理性,讓學生感知到數(shù)學知識來源于生活,并應用于生活。

  教學建議

  (一)重點、難點分析

  本節(jié)的教學重點是能夠熟練進行運算。依據(jù)法則和運算律靈活進行有理數(shù)乘法運算是進一步學習除法運算和乘方運算的基礎。運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y合因數(shù)可以簡化運算過程。

  本節(jié)的難點是對法則的理解。法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。

  (二)知識結構

  (三)教法建議

  1.有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。

  2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”.絕對值相乘也就是小學學過的算術乘法.

  3.基礎較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。

  4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.

  5.小學學過的乘法交換律、結合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。

  6.如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。

  教學設計示例

  (第一課時)

  教學目標

  1.使學生在了解意義基礎上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;

  2.通過運算,培養(yǎng)學生的運算能力;

  3.通過教材給出的行程問題,認識數(shù)學來源于實踐并反作用于實踐。

  教學重點和難點

  重點:依據(jù)法則,熟練進行運算;

  難點:有理數(shù)乘法法則的理解.

  課堂教學過程 設計

  一、從學生原有認知結構提出問題

  1.計算(-2)+(-2)+(-2).

  2.有理數(shù)包括哪些數(shù)?小學學習四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))

  3.有理數(shù)加減運算中,關鍵問題是什么?和小學運算中最主要的.不同點是什么?(符號問題)

  4.根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學習的除法中將引出的新內容以及關鍵問題是什么?(負數(shù)問題,符號的確定)

  二、師生共同研究有理數(shù)乘法法則

  問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?

  解:3×2=6(厘米) ①

  答:上升了6厘米.

  問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?

  解:-3×2=-6(厘米) ②

  答:上升-6厘米(即下降6厘米).

  引導學生比較①,②得出:

  把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).

  這是一條很重要的結論,應用此結論,3×(-2)=?(-3)×(-2)=?(學生答)

  把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.

  把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.

  此外,(-3)×0=0.

  綜合上面各種情況,引導學生自己歸納出有理數(shù)乘法的法則:

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

  任何數(shù)同0相乘,都得0.

  繼而教師強調指出:

  “同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學學習的乘法,有理數(shù)中特別注意“負負得正”和“異號得負”.

  用有理數(shù)乘法法則與小學學習的乘法相比,由于介入了負數(shù),使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結為小學的乘法了.

  因此,在進行有理數(shù)乘法時,需要時時強調:先定符號后定值.

  三、運用舉例,變式練習

  例1 計算:

  例2 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.

  (1)t小時后溫度是多少?

  (2)當a,t分別是下列各數(shù)時的結果:

 、賏=3,t=2;②a=-3,t=2;

 、赼=3,t=-2;④a=-3,t=-2;

  教師引導學生檢驗一下(2)中各結果是否合乎實際.

  課堂練習

  1.口答:

  (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

  (5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);

  2.口答:

  (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

  (4)-(-5); (5)1×a; (6)(-1)×a.

  這一組題做完后讓學生自己總結:一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調指出,a可以是正數(shù),也可以是負數(shù)或0;-a未必是負數(shù),也可以是正數(shù)或0.

  3.當a,b是下列各數(shù)值時,填寫空格中計算的積與和:

  4.填空:

  (1)1×(-6)=xxxxxx;(2)1+(-6)=xxxxxxx;

  (3)(-1)×6=xxxxxxxx;(4)(-1)+6=xxxxxx;

  (5)(-1)×(-6)=xxxxxx;(6)(-1)+(-6)=xxxxx;

  (9)|-7|×|-3|=xxxxxxx;(10)(-7)×(-3)=xxxxxx.

  5.判斷下列方程的解是正數(shù)還是負數(shù)或0:

  (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

  四、小結

  今天主要學習了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”.

  五、作業(yè)

  1.計算:

  (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

  (4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).

  2.計算:

  3.填空(用“>”或“<”號連接):

  (1)如果 a<0,b<0,那么 ab xxxxxxxx0;

  (2)如果 a<0,b<0,那么ab xxxxxxx0;

  (3)如果a>0時,那么a xxxxxxxxxxxx2a;

  (4)如果a<0時,那么a xxxxxxxxxx2a.

  探究活動

  問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉其中的4只,能否經過若干次翻轉,把它們翻成杯口全部朝下?

  答案: “±1”將告訴你:不管你翻轉多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的。

  道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.

七年級數(shù)學教案8

  一元一次不等式組

  教學目標

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

  2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗數(shù)學學習的樂趣,感受一元一次不等式組在解決實際問題中的.價值。

  教學難點

  正確分析實際問題中的不等關系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

  在討論或議論的基礎上老師揭示:

  步法一致(設、列、解、答);本質有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

七年級數(shù)學教案9

  教學目標:

  1.掌握數(shù)軸三要素,能正確畫出數(shù)軸.

  2.能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù).

  教學重點:

  數(shù)軸的概念.

  教學難點:

  從直觀認識到理性認識,從而建立數(shù)軸概念.

  教與學互動設計:

  (一)創(chuàng)設情境,導入新課

  課件展示課本P7的“問題”(學生畫圖)

  (二)合作交流,解讀探究

  師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數(shù)分別用正數(shù)和負數(shù)來表示,即用一直線上的點把正數(shù)、負數(shù)、0都表示出來,也就是本節(jié)要學的內容——數(shù)軸.

  【點撥】(1)引導學生學會畫數(shù)軸.

  第一步:畫直線,定原點.

  第二步:規(guī)定從原點向右的方向為正(左邊為負方向).

  第三步:選擇適當?shù)拈L度為單位長度(據(jù)情況而定).

  第四步:拿出教學溫度計,由學生觀察溫度計的結構和數(shù)軸的結構是否有共同之處.

  對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?

  (2)有了以上基礎,我們可以來試著定義數(shù)軸:

  規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸.

  做一做學生自己練習畫出數(shù)軸.

  試一試你能利用你自己畫的數(shù)軸上的點來表示數(shù)4,1.5,-3,-2,0嗎?

  討論若a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?

  小結整數(shù)在數(shù)軸上都能找到點表示嗎?分數(shù)呢?

  可見,所有的都可以用數(shù)軸上的點表示;都在原點的左邊,都在原點的右邊.

  (三)應用遷移,鞏固提高

  【例1】下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  【例2】試一試:用你畫的數(shù)軸上的點表示4,1.5,-3,-,0.

  【例3】下列語句:

  ①數(shù)軸上的點只能表示整數(shù);②數(shù)軸是一條直線;③數(shù)軸上的一個點只能表示一個數(shù);④數(shù)軸上找不到既不表示正數(shù),又不表示負數(shù)的點;⑤數(shù)軸上的點所表示的數(shù)都是有理數(shù).正確的說法有(  )

  A.1個B.2個C.3個D.4個

  【例4】在數(shù)軸上表示-2和1,并根據(jù)數(shù)軸指出所有大于-2而小于1的整數(shù).

  【例5】數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度是1cm,若在這個數(shù)軸上隨意畫出一條長為20xxcm的線段AB,則線段AB蓋住的整點有(  )

  A.1998個或1999個B.1999個或20xx個

  C.20xx個或20xx個D.20xx個或20xx個

  (四)總結反思,拓展升華

  數(shù)軸是非常重要的工具,它使數(shù)和直線上的`點建立了一一對應的關系.它揭示了數(shù)和形的內在聯(lián)系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數(shù)軸的三要素,正確畫出數(shù)軸.提醒大家,所有的有理數(shù)都可以用數(shù)軸上的相關點來表示,但反過來并不成立,即數(shù)軸上的點并不都表示有理數(shù).

  (五)課堂跟蹤反饋

  夯實基礎

  1.規(guī)定了、     、的直線叫做數(shù)軸,所有的有理數(shù)都可從用上的點來表示.

  2.P從數(shù)軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數(shù)是.

  3.把數(shù)軸上表示2的點移動5個單位長度后,所得的對應點表示的數(shù)是(  )

  A.7 B.-3

  C.7或-3 D.不能確定

  4.在數(shù)軸上,原點及原點左邊的點所表示的數(shù)是(  )

  A.正數(shù)B.負數(shù)

  C.不是負數(shù)D.不是正數(shù)

  5.數(shù)軸上表示5和-5的點離開原點的距離是,但它們分別表示.

  提升能力

  6.與原點距離為3.5個單位長度的點有2個,它們分別是和.

  7.畫出一條數(shù)軸,并把下列數(shù)表示在數(shù)軸上:

  +2,-3,0.5,0,-4.5,4,3.

  開放探究

  8.在數(shù)軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數(shù)軸上,最多能覆蓋個整數(shù)點.

  9.下列四個數(shù)中,在-2到0之間的數(shù)是(  )

  A.-1 B.1 C.-3 D.3

七年級數(shù)學教案10

  一、素質教育目標

  (一)知識教學點

  1.理解有理數(shù)乘方的意義.

  2.掌握有理數(shù)乘方的運算.

  (二)能力訓練點

  1.培養(yǎng)學生觀察、分析、比較、歸納、概括的能力.

  2.滲透轉化思想.

  (三)德育滲透點:培養(yǎng)學生勤思、認真和勇于探索的精神.

  (四)美育滲透點

  把記成,顯示了乘方符號的簡潔美.

  二、學法引導

  1.教學方法:引導探索法,嘗試指導,充分體現(xiàn)學生主體地位.

  2.學生學法:探索的性質→練習鞏固

  三、重點、難點、疑點及解決辦法

  1.重點:運算.

  2.難點:運算的符號法則.

  3.疑點:①乘方和冪的區(qū)別.

 、谂c的區(qū)別.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片.

  六、師生互動活動設計

  教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.

  七、教學步驟

  (一)創(chuàng)設情境,導入 新課

  師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

  生:可以記作,讀作的四次方.

  師:呢?

  生:可以記作,讀作的五次方.

  師:(為正整數(shù))呢?

  生:可以記作,讀作的次方.

  師:很好!把個相乘,記作,既簡單又明確.

  【教法說明】教師給學生創(chuàng)設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數(shù)學的發(fā)展是不斷進行推廣的,是由計算正方形的面積得到的.,是由計算正方體和體積得到的,而,……是學生通過類推得到的.

  師:在小學對底數(shù),我們只能取正數(shù).進入中學以后我們學習了有理數(shù),那么還可取哪些數(shù)呢?請舉例說明.

  生:還可取負數(shù)和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

  非常好!對于中的,不僅可以取正數(shù),還可以取0和負數(shù),也就是說可以取任意有理數(shù),這就是我們今天研究的課題:(板書).

  【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據(jù)初一學生的認知水平,分層逐步說明可以取正數(shù),可以取零,可以取負數(shù),最后總結出可以取任意有理數(shù).

  (二)探索新知,講授新課

  1.求個相同因數(shù)的積的運算,叫做乘方.

  乘方的結果叫做冪,相同的因數(shù)叫做底數(shù),相同的因數(shù)的個數(shù)叫做指數(shù).一般地,在中,取任意有理數(shù),取正整數(shù).

  注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

  鞏固練習(出示投影1)

 。1)在中,底數(shù)是__________,指數(shù)是___________,讀作__________或讀作___________;

 。2)在中,-2是__________,4是__________,讀作__________或讀作__________;

 。3)在中,底數(shù)是_________,指數(shù)是__________,讀作__________;

 。4)5,底數(shù)是___________,指數(shù)是_____________.

  【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區(qū)別表示底數(shù)是-2,指數(shù)是4的冪;而表示底數(shù)是2,指數(shù)是4的冪的相反數(shù).為后面的計算做鋪墊.通過第(4)小題指出一個數(shù)可以看作這個數(shù)本身的一次方,如5就是,指數(shù)1通常省略不寫.

  師:到目前為止,對有理數(shù)業(yè)說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?

  學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

  生:到目前為止,已經學習過五種運算,它們是:

  運算:加、減、乘、除、乘方;

  運算結果:和、差、積、商、冪;

  教師對學生的回答給予評價并鼓勵.

  【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養(yǎng)學生歸納、總結的能力.

  師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

  學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

  【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算.向學生滲透轉化的思想.

  2.練習:(出示投影2)

  計算:1.(1)2, (2), (3), (4).

  2.(1),,,.

 。2)-2,,.

  3.(1)0, (2), (3), (4).

  學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

  師:請同學們觀察、分析、比較這三組題中,每組題中底數(shù)、指數(shù)和冪之間有什么聯(lián)系?

  先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

  生:正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),零的任何次冪都是零.

  師:請同學們繼續(xù)觀察與,與中,底數(shù)、指數(shù)和冪之間有何聯(lián)系?你能得出什么結論呢?

  學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

  生:互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等.

  師:請同學思考一個問題,任何一個數(shù)的偶次冪是什么數(shù)?

  生:任何一個數(shù)的偶次冪是非負數(shù).

  師:你能把上述結論用數(shù)學符號表示嗎?

  生:(1)當時,(為正整數(shù));

  (2)當

 。3)當時,(為正整數(shù));

 。4)(為正整數(shù));

 。檎麛(shù));

  (為正整數(shù),為有理數(shù)).

  【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創(chuàng)造發(fā)揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

七年級數(shù)學教案11

  一、課題

  2.1數(shù)怎么不夠用了(2)

  二、教學目標

  1.使學生理解有理數(shù)的意義,并能將給出的有理數(shù)進行分類;

  2.培養(yǎng)學生樹立分類討論的思想。

  三、教學重點和難點

  重點

  難點

  有理數(shù)包括哪些數(shù).

  有理數(shù)的分類及其分類的標準.

  四、教學手段

  現(xiàn)代課堂教學手段

  五、教學方法

  啟發(fā)式教學

  六、教學過程

  (一)、從學生原有的認知結構提出問題

  1.什么是正、負數(shù)?

  2.如何用正、負數(shù)表示具有相反意義的量?數(shù)0表示量的意義是什么?舉例說明.

  3.任何一個正數(shù)都比0大嗎?任何一個負數(shù)都比0小嗎?

  4.什么是整數(shù)?什么是分數(shù)?

  根據(jù)學生的回答引出新課.

  (二)、講授新課

  1.給出新的整數(shù)、分數(shù)概念

  引進負數(shù)后,數(shù)的范圍擴大了.過去我們說整數(shù)只包括自然數(shù)和零,引進負數(shù)后,我們把自然數(shù)叫做正整數(shù),自然數(shù)前加上負號的數(shù)叫做負整數(shù),因而整數(shù)包括正整數(shù)(自然數(shù))、負整數(shù)和零,同樣分數(shù)包括正分數(shù)、負分數(shù),即

  2.給出有理數(shù)概念

  整數(shù)和分數(shù)統(tǒng)稱為有理數(shù),即

  有理數(shù)是英語“Rational number”的譯名,更確切的譯名應譯作“比

  3.有理數(shù)的分類

  為了便于研究某些問題,常常需要將有理數(shù)進行分類,需要不同,分類的方法也常常不同根據(jù)有理數(shù)的定義可將有理數(shù)分成兩類:整數(shù)和分數(shù).有理數(shù)還有沒有其他的分類方法?

  待學生思考后,請學生回答、評議、補充.

  教師小結:按有理數(shù)的符號分為三類:正有理數(shù)、負有理數(shù)和零,簡稱正數(shù)、負數(shù)和零,即

  并指出,在有理數(shù)范圍內,正數(shù)和零統(tǒng)稱為非負數(shù).并向學生強調:分類可以根據(jù)不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類.

  (三)、運用舉例 變式練習

  例1

  將下列數(shù)按上述兩種標準分類:

  例2

  下列各數(shù)是正數(shù)還是負數(shù),是整數(shù)還是分數(shù):

  課堂練習

  25、-100按兩種標準分類.

  2、下列各數(shù)是正數(shù)還是負數(shù),是整數(shù)還是分數(shù)?

  (四)、小結

  教師引導學生回答如下問題:本節(jié)課學習了哪些基本內容?學習了什么數(shù)學思想方法?應注意什么問題?

  七、練習設計

  1.把下列各數(shù)填在相應的.括號里(將各數(shù)用逗號分開):

  正整數(shù)集合:{ …};

  負整數(shù)集合:{ …};

  正分數(shù)集合:{ …};

  負分數(shù)集合:{ …}.

  2.填空題:

  的數(shù)是______,在分數(shù)集合里的數(shù)是______;

  (2)整數(shù)和分數(shù)合起來叫做______,正分數(shù)和負分數(shù)合起來叫做______.

  3.選擇題

  (1)-100不是

  A.有理數(shù) B.自然數(shù) C.整數(shù) D.負有理數(shù)

  (2)在以下說法中,正確的是[ ]

  A.非負有理數(shù)就是正有理數(shù)

  B.零表示沒有,不是有理數(shù)

  C.正整數(shù)和負整數(shù)統(tǒng)稱為整數(shù)

  D.整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)

  八、板書設計

  2.1數(shù)怎么不夠用了(2)

  (一)知識回顧 (三)例題解析 (五)課堂小結

  (二)觀察發(fā)現(xiàn) 例1、例2

 。ㄋ模┱n堂練習 練習設計

  九、教學后記

  在傳授知識的同時,一定要重視數(shù)學基本思想方法的教學.關于這一點,布魯納有過精彩的論述.他指出,掌握數(shù)學思想和方法可以使數(shù)學更容易理解和更容易記憶,更重要的是領會數(shù)學思想和方法是通向遷移大道的“光明之路”,如果把數(shù)學思想和方法學好了,在數(shù)學思想和方法的指導下運用數(shù)學方法駕馭數(shù)學知識,就能培養(yǎng)學生的數(shù)學能力.不但使數(shù)學學習變得容易,而且會使得別的學科容易學習.顯然,按照布魯納的觀點,數(shù)學教學就不能就知識論知識,而是要使學生掌握數(shù)學最根本的東西,用數(shù)學思想和方法統(tǒng)攝具體知識,具體解決問題的方法,逐步形成和發(fā)展數(shù)學能力.

  為了使學生掌握必要的數(shù)學思想和方法,需要在教學中結合內容逐步滲透,而不能脫離內容形式地傳授.本課中,我們有意識地突出“分類討論”這一數(shù)學思想方法,并在教學中注意滲透兩點:

  1.分類的標準不同,分類的結果也不相同;

  2.分類的結果應是無遺漏、無重復,即每一個數(shù)必須屬于某一類,又不能同時屬于不同的兩類.

七年級數(shù)學教案12

  教學設計思路

  “問題是思考的開始”,問題的提出是數(shù)學教學中重要的一環(huán),使學生明確學習內容的必要性,才有可能調動學生解決問題的主動性,促進學生認識能力的提高與發(fā)展.而對于生產和生活中的實際問題,學生看得見,摸得著,有的還親身經歷過,所以,當教師提出這些問題時,他們一定會躍躍欲試,想學以致用,這樣能起到充分調動學習積極性的作用.

  教學目標

  知識與技能:

  1.經歷同底數(shù)冪的除法運算性質的獲得過程,掌握同底數(shù)冪的運算性質,會用同底數(shù)冪的運算性質進行有關計算,提高學生的運算能力.

  2.了解零指數(shù)冪和負整指數(shù)冪的意義,知道零指數(shù)冪和負整指數(shù)冪規(guī)定的合理性.

  過程與方法:

  經歷探索同底數(shù)冪的除法的運算性質的過程,進一步體會冪的意義,發(fā)展推理能力,提高語言表達能力.

  情感態(tài)度價值觀:

  感受數(shù)學公式的簡潔美、和諧美.

  重點難點

  重點:準確、熟練地運用法則進行計算.

  難點:負指數(shù)冪的條件及法則的正確運用.

  教學過程

  1.創(chuàng)設情境,復習導入

  前面我們學習了同底數(shù)冪的乘法,請同學們回答如下問題,看哪位同學回答得快而且準確.

  (1)敘述同底數(shù)冪的乘法性質.

 。2)計算:① ② ③

  學生活動:學生回答上述問題.

  (m,n都是正整數(shù))

  教法說明:通過復習引起學生回憶,鞏固同底數(shù)冪的乘法性質,同時為本節(jié)的學習打下基礎.

  2.提出問題,引出新知

  我國研制的“銀河”巨型計算機的運算速度是108次/秒,光計算機(主要由光學運算器、光學存儲器和光學控制器組成)的運算速度是108次/秒.光計算機的運算速度是“銀河”計算機運算速度的多少倍?

  怎樣計算 呢?

  這就是我們這節(jié)課要學習的同底數(shù)冪的除法運算.

  3.導向深入,得出性質

  做一做(鼓勵學生根據(jù)冪的意義和除法意義,獨立得出結果)

  按乘方的意義和除法計算:

 。1)

 。2)

 。3)

 。4)

  探究:(1)若a≠0,a15÷a5等于什么?

 。2)通過上面的計算,對同底數(shù)冪的`除法運算,你發(fā)現(xiàn)了什么規(guī)律?

  學生思考,回答

  師生共同總結:

  教師把結論寫在黑板上.

  請同學們試著用文字概括這個性質:

  【公式分析與說明】提出問題:在運算過程當中,除數(shù)能否為0?

  學生回答:不能.(并說明理由)

  由此得出:同底數(shù)冪相除,底數(shù) .教師指出在我們所學知識范圍內,公式中的m、n為正整數(shù),且m>n,最后綜合得出:

  一般地,這就是說,同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

  嘗試證明:

  4.揭示規(guī)律

  由此我們規(guī)定

  規(guī)律一:任何不等于0的數(shù)的0次冪都等于1.

  一般我們規(guī)定

  規(guī)律二:任何不等于0的數(shù)的-p(p是正整數(shù))次冪等于這個數(shù)的p次冪的倒數(shù).

  5.嘗試反饋,理解新知

  (補充)例2 自從掃描隧道電子顯微鏡發(fā)明后,便誕生了一門新技術一納米技術.納米是長度單位,1 nm (納米)等于 0.000 000 001 m .請用科學記數(shù)法表示 0.000 000 001.

  分析:絕對值較小的數(shù)可以用一個有一位整數(shù)的數(shù)與 10 的負指數(shù)幕的乘積的形式來表示.

  學生活動:學生在練習本上完成例l、例2,由2個學生板演完成之后,由學生判斷板演是否正確.

  教師活動:統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.

  6.反饋練習,鞏固知識

  練習一

 。1)填空:

  ① ②

 、 ④

  (2)計算:

 、 ②

  ③ ④

  學生活動:第(l)題由學生口答;第(2)題在練習本上完成,然后同桌互閱,教師抽查.

  練習二

  下面的計算對不對?如果不對,應怎樣改正?

 。1) (2)

  (3) (4)

  學生活動:此練習以學生搶答方式完成,注意訓練學生的表述能力,以提高興趣.

  總結、擴展

  我們共同總結這節(jié)課的學習內容.

  學生活動:①同底數(shù)冪相除,底數(shù) ,指數(shù) .

 、谟蓪W生談本書內容體會.

  教法說明:強調“不變”、“相減”.學生談體會,不僅是對本節(jié)知識的再現(xiàn),同時也培養(yǎng)了學生的口頭表達能力和概括總結能力.

  6.小結

  本節(jié)主要學習內容:

  同底數(shù)冪的除法運算性質.

  零指數(shù)與負整數(shù)指數(shù)的意義.

  用科學記數(shù)法表示絕對值較小的數(shù)的方法.

  冪的運算與指數(shù)運算的關系: (m,n都是正整數(shù)); (a≠0,m,n都是正整數(shù)),即在底數(shù)相同的條件下:冪相乘→指數(shù)相加,冪相除→指數(shù)相減.

  注意的地方:

  在同底數(shù)冪的除法性質及零指數(shù)冪與負整數(shù)指數(shù)冪中,千萬不能忽略底數(shù)a≠0的條件.

  7.布置作業(yè)

  P78 A組3、4 B組2、3

  8.板書設計

  8.3同底數(shù)冪的除法

  一、同底數(shù)冪的法則

  二、例題 練習

  例1 (補充)例2

七年級數(shù)學教案13

  一、 教學目標

  1、 在了解相反意義量的基礎上,使學生了解正負數(shù)的概念和學習正負數(shù)的意義。

  2、 使學生能正確判斷一個數(shù)是正數(shù)還是負數(shù),明確零既不是正數(shù)也不是負數(shù)。

  3、 學會用正負數(shù)表示實際問題中具有相反意義的量。

  二、 教學重點和難點

  重點:正負數(shù)的概念

  難點:負數(shù)的概念

  三、 教具

  投影片、實物投影儀

  四、 教學內容

  (一 )引入

  師:我們知道,為了表示物體的個數(shù)和事物的順序,產生了1,2,3,4……這些數(shù),我們把它叫做什么數(shù)?

  生:自然數(shù)

  師:為了表示“沒有”,又引入了一個什么數(shù)?

  生:自然數(shù)0

  師:當測量和計算的結果不是整數(shù)時,又引進了什么數(shù)?

  生:分數(shù)(小數(shù))

  師:可見數(shù)的概念是隨著生產和生活的需要而不斷發(fā)展的。請同學們想一想,在現(xiàn)實生活中是否還存在著別類型的'數(shù)呢?如吐魯番盆地最低處低于海平面155米,世界最高峰珠穆朗瑪高出海平面8848.13米,我市某天最高氣溫是零上8攝氏度。

  請學生用數(shù)表示這些量,遭遇表示困難。

  師:為了能表示這些量,我們需要引入一種新數(shù)這就是本節(jié)課所要學習的內容。[板書:1、1正數(shù)與負數(shù)]

  (二)新課教學

  1、 相反意義的量

  師:在現(xiàn)實生活中,我們常常遇到一些具有相反意義的量,比如:(投影片顯示)

  (1) 汽車向東行駛2.5千米和向西行駛1.5千米;

  (2) 氣溫從零上6攝氏度下降到零下6攝氏度;

  (3) 風箏上升10米或下降5米。

  引導學生明確具有相反意義的量的特征:(1)有兩個量 (2)有相反的意義

  請學生舉出一些相反意義的量的實例。

  教師歸結:相反意義中的一些常用詞有:盈利與虧損,存入與支出,增加與減少,運進與運出,上升與下降等。

  2、 正數(shù)與負數(shù)

  師:用小學里學過的數(shù)能表示這些具有相反意義的量嗎?如何來表示具有相反意義的量呢?

  由師生討論后得出:我們把一種意義的量規(guī)定為正的,用“+”(讀作正)號來表示,同時把另一種與它相反意義的量規(guī)定為負的,用“-”(讀作負)號來表示。

  師:例如,如果零上6℃記作+6℃(讀作正6攝氏度),那么零下6℃記作-6℃(讀作負6攝氏度),請同學們用同樣的方法表示(1)、(2)兩題。

  生:(1)如果向東行駛2.5千米記作+2.5千米(讀作正2.5千米),那么向西行駛1.5千米記作-1.5千米(讀作負1.5千米);(2)如果上升10米記作+10米(讀作正10米),那么下降5米記作-5米(讀作負5米)。

  師:像+6,+10,+2.5等前面放有“+”號的數(shù)叫做正數(shù),像-6,-5,-1.5等前面放有“-”號的數(shù)叫做負數(shù)。正號可以省略不寫,如+5可以寫成5,但負數(shù)的負號能省略不寫嗎?

  生:(討論后得出)不能。

  師:(以溫度計為例)溫度計中的0不是表示沒有溫度,它通常表示水結成冰時的溫度,是零上溫度與零下溫度的分界點,因此得出:零既不是正數(shù)也不是負數(shù)。

  (三)、練習

  1、 學生完成課本第4頁練習1,2,3

  2、 補充練習

  (1)在-2,+2.5,0, ,-0.35,11中,正數(shù)是 ,負數(shù)是 ;

  (2)如果向東為正,那么走-50米表示什么意思?如果向南為正,那么走-50米又表示什么意思?

  (3)歐洲人以地面一層記為0,那么1樓、2樓、3樓……就表示為0,1,2……那么地下第二層表示為 。

  (四)小結

  1、 引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示。

  2、 在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定。

  3、 要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與小學里學過的數(shù)有很大的區(qū)別。

  (五)作業(yè)

  見作業(yè)1.1節(jié)作業(yè)。

七年級數(shù)學教案14

  一、教學目標

  【知識與技能】

  了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。

  【過程與方法】

  通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應關系,體會數(shù)形結合的思想。

  【情感、態(tài)度與價值觀】

  在數(shù)與形結合的過程中,體會數(shù)學學習的樂趣。

  二、教學重難點

  【教學重點】

  數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。

  【教學難點】

  數(shù)形結合的思想方法。

  三、教學過程

  (一)引入新課

  提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學習的數(shù)軸。

  (二)探索新知

  學生活動:小組討論,用畫圖的`形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:

  提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

  學生活動:畫圖表示后提問。

  提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

  教師給出定義:在數(shù)學中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

  提問3:你是如何理解數(shù)軸三要素的?

  師生共同總結:“原點”是數(shù)軸的“基準”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

  (三)課堂練習

  如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

  (四)小結作業(yè)

  提問:今天有什么收獲?

  引導學生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

  課后作業(yè):

  課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?

七年級數(shù)學教案15

  一、教學目標

  1、知識目標:掌握數(shù)軸三要素,會畫數(shù)軸。

  2、能力目標:能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;

  3、情感目標:向學生滲透數(shù)形結合的思想。

  二、教學重難點

  教學重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。

  教學難點:有理數(shù)與數(shù)軸上點的對應關系。

  三、教法

  主要采用啟發(fā)式教學,引導學生自主探索去觀察、比較、交流。

  四、教學過程

 。ㄒ唬﹦(chuàng)設情境激活思維

  1。學生觀看鐘祥二中相關背景視頻

  意圖:吸引學生注意力,激發(fā)學生自豪感。

  2。聯(lián)系實際,提出問題。

  問題1:鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

  師生活動:學生思考解決問題的方法,學生代表畫圖演示。

  學生畫圖后提問:

  1。馬路用什么幾何圖形代表?(直線)

  2。文中相關地點用什么代表?(直線上的點)

  3。學校大門起什么作用?(基準點、參照物)

  4。你是如何確定問題中各地點的位置的?(方向和距離)

  設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學抽象。

  問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學校大門的相對位置關系呢?

  師生活動:

  學生思考后回答解決方法,學生代表畫圖。

  學生畫圖后提問:

  1。0代表什么?

  2。數(shù)的符號的實際意義是什么?

  3!75表示什么?100表示什么?

  設計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎。

  問題3:生活中常見的溫度計,你能描述一下它的結構嗎?

  設計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導學生用三要素表達,為定義數(shù)軸的概念提供直觀基礎。

  問題4:你能說說上述2個實例的共同點嗎?

  設計意圖:進一步明確“三要素”的`意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎。

  (二)自主學習探究新知

  學生活動:帶著以下問題自學課本第8頁:

  1。什么樣的直線叫數(shù)軸?它具備什么條件。

  2。如何畫數(shù)軸?

  3。根據(jù)上述實例的經驗,“原點”起什么作用?

  4。你是怎么理解“選取適當?shù)拈L度為單位長度”的?

  師生活動:

  學生自學完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。

  設計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。

  至此,學生已會畫數(shù)軸,師生共同歸納總結(板書)

 、贁(shù)軸的定義。

  ②數(shù)軸三要素。

  練習:(媒體展示)

  1。判斷下列圖形是否是數(shù)軸。

  2?诖穑簲(shù)軸上各點表示的數(shù)。

  3。在數(shù)軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。

 。ㄈ┬〗M合作交流展示

  問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  數(shù)軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數(shù),對表示a的點和—a的點進行同樣的討論。

  設計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學生的抽象概括能力。

 。ㄋ模w納總結反思提高

  師生共同回顧本節(jié)課所學主要內容,回答以下問題:

  1。什么是數(shù)軸?

  2。數(shù)軸的“三要素”各指什么?

  3。數(shù)軸的畫法。

  設計意圖:梳理本節(jié)課內容,掌握本節(jié)課的核心――數(shù)軸“三要素”。

  (五)目標檢測設計

  1。下列命題正確的是()

  A。數(shù)軸上的點都表示整數(shù)。

  B。數(shù)軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

  C。數(shù)軸包括原點與正方向兩個要素。

  D。數(shù)軸上的點只能表示正數(shù)和零。

  2。畫數(shù)軸,在數(shù)軸上標出—5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。

  3。畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4。在數(shù)軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。

  五、板書

  1。數(shù)軸的定義。

  2。數(shù)軸的三要素(圖)。

  3。數(shù)軸的畫法。

  4。性質。

  六、課后反思

  附:活動單

  活動一:畫一畫

  鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

  思考:如何簡明地用數(shù)表示這些地理位置與學校大門的相對位置關系?

  活動二:讀一讀

  帶著以下問題閱讀教科書P8頁:

  1。什么樣的直線叫數(shù)軸?

  定義:規(guī)定了_________、________、_________的直線叫數(shù)軸。

  數(shù)軸的三要素:_________、_________、__________。

  2。畫數(shù)軸的步驟是什么?

  3。“原點”起什么作用?__________

  4。你是怎么理解“選取適當?shù)拈L度為單位長度”的?

  練習:

  1。畫一條數(shù)軸

  2。在你畫好的數(shù)軸上表示下列有理數(shù):1。5,—2,—2。5,2,2。5,0,—1。5

  活動三:議一議

  小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  歸納:一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的____邊,與原點的距離是____個單位長度;表示數(shù)—a的點在原點的____邊,與原點的距離是____個單位長度。

  練習:

  1。數(shù)軸上表示—3的點在原點的_______側,距原點的距離是______;表示6的點在原點的______側,距原點的距離是______;兩點之間的距離為_______個單位長度。

  2。距離原點距離為5個單位的點表示的數(shù)是________。

  3。在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是________。

  附:目標檢測

  1。下列命題正確的是()

  A。數(shù)軸上的點都表示整數(shù)。

  B。數(shù)軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

  C。數(shù)軸包括原點與正方向兩個要素。

  D。數(shù)軸上的點只能表示正數(shù)和零。

  2。畫數(shù)軸,在數(shù)軸上標出—5和+5之間的所有整數(shù)。列舉到原點的距離小于3的所有整數(shù)。

  3。畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。

  4。在數(shù)軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。

【七年級數(shù)學教案】相關文章:

七年級上數(shù)學教案02-07

七年級數(shù)學教案08-19

七年級人教版數(shù)學教案11-03

初中七年級數(shù)學教案06-24

七年級下冊數(shù)學教案08-26

最新七年級數(shù)學教案09-28

七年級數(shù)學教案【熱門】01-07

人教版七年級數(shù)學教案11-14

【薦】七年級數(shù)學教案12-19