丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

高一數(shù)學(xué)教案

時(shí)間:2022-11-07 15:27:39 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)教案(15篇)

  作為一名教師,常常要寫(xiě)一份優(yōu)秀的教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。怎樣寫(xiě)教案才更能起到其作用呢?以下是小編為大家收集的高一數(shù)學(xué)教案,希望能夠幫助到大家。

高一數(shù)學(xué)教案(15篇)

高一數(shù)學(xué)教案1

  1、教材(教學(xué)內(nèi)容)

  本課時(shí)主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類(lèi)重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時(shí)的內(nèi)容具有承前啟后的重要作用:承前是因?yàn)榭梢杂煤瘮?shù)的定義來(lái)抽象和規(guī)范三角函數(shù)的定義,同時(shí)也可以類(lèi)比研究函數(shù)的模式和方法來(lái)研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進(jìn)一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會(huì)三角函數(shù)在解決具有周期性變化規(guī)律問(wèn)題中的作用,從而更深入地領(lǐng)會(huì)數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、

  2、設(shè)計(jì)理念

  本堂課采用“問(wèn)題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過(guò)問(wèn)題引導(dǎo)學(xué)生梳理已有的知識(shí)結(jié)構(gòu),展開(kāi)合理的聯(lián)想,提出整堂課要解決的中心問(wèn)題:圓周運(yùn)動(dòng)等具周期性規(guī)律運(yùn)動(dòng)可以建立函數(shù)模型來(lái)刻畫(huà)嗎?從而引導(dǎo)學(xué)生帶著問(wèn)題閱讀和鉆研教材,引發(fā)認(rèn)知沖突,再通過(guò)問(wèn)題引導(dǎo)學(xué)生改造或重構(gòu)已有的認(rèn)知結(jié)構(gòu),并運(yùn)用類(lèi)比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過(guò)例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認(rèn)識(shí)結(jié)構(gòu),從而達(dá)成教學(xué)目標(biāo)、

  3、教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會(huì)運(yùn)用這一定義,解決相關(guān)問(wèn)題、

  過(guò)程與方法目標(biāo):體會(huì)數(shù)學(xué)建模思想、類(lèi)比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、

  情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

  4、重點(diǎn)難點(diǎn)

  重點(diǎn):任意角三角函數(shù)的定義、

  難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類(lèi)比與化歸思想的滲透、

  5、學(xué)情分析

  學(xué)生已有的認(rèn)知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過(guò)程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點(diǎn)的坐標(biāo)來(lái)表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認(rèn)知結(jié)構(gòu)、

  6、教法分析

  “問(wèn)題解決”教學(xué)法,是以問(wèn)題為主線(xiàn),引導(dǎo)和驅(qū)動(dòng)學(xué)生的思維和學(xué)習(xí)活動(dòng),并通過(guò)問(wèn)題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過(guò)程,最后在解決問(wèn)題的過(guò)程中形成新的認(rèn)知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、

  7、學(xué)法分析

  本課時(shí)先通過(guò)“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過(guò)類(lèi)比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類(lèi)比學(xué)習(xí)法,來(lái)研究三角函數(shù)一些基本性質(zhì)和符號(hào)問(wèn)題,從而使學(xué)生形成新的認(rèn)識(shí)結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)、

  8、教學(xué)設(shè)計(jì)(過(guò)程)

  一、引入

  問(wèn)題1:我們已經(jīng)學(xué)過(guò)了任意角和弧度制,你對(duì)“角”這一概念印象最深的是什么?

  問(wèn)題2:研究“任意角”這一概念時(shí),我們引進(jìn)了平面直角坐標(biāo)系,對(duì)平面直角坐標(biāo)系,令你印象最深刻的是什么?

  問(wèn)題3:當(dāng)角clipXimage002的終邊在繞頂點(diǎn)O轉(zhuǎn)動(dòng)時(shí),終邊上的一個(gè)點(diǎn)P(x,y)必定隨著終邊繞頂點(diǎn)O作圓周運(yùn)動(dòng),在這圓周運(yùn)動(dòng)中,有哪些數(shù)量?圓周運(yùn)動(dòng)的這些量之間的關(guān)系能用一個(gè)函數(shù)模型來(lái)刻畫(huà)嗎?

  二、原有認(rèn)知結(jié)構(gòu)的改造和重構(gòu)

  問(wèn)題4:當(dāng)角clipXimage002[1]是銳角時(shí),clipXimage004,線(xiàn)段OP的長(zhǎng)度clipXimage006這幾個(gè)量之間有何關(guān)系?

  學(xué)生回答,分析結(jié)論,指出這種關(guān)系就是我們?cè)诔踔袑W(xué)習(xí)過(guò)的銳角三角函數(shù)

  學(xué)生閱讀教材,并思考:

  問(wèn)題5:銳角三角函數(shù)是我們高中意義上的函數(shù)嗎?如何利用函數(shù)的定義來(lái)理解它?

  學(xué)生討論并回答

  三、新概念的形成

  問(wèn)題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數(shù)的定義嗎?

  學(xué)生回答,并閱讀教材,得到任意角三角函數(shù)的定義、并思考:

  問(wèn)題7:任意角三角函數(shù)的定義符合我們高中所學(xué)的'函數(shù)定義嗎?

  展示任意角三角函數(shù)的定義,并指出它是如何刻劃圓周運(yùn)動(dòng)的

  并類(lèi)比函數(shù)的研究方法,得出任意角三角函數(shù)的定義域和值域。

  四、概念的運(yùn)用

  1、基礎(chǔ)練習(xí)

 、倏谒鉩lipXimage008的值、

 、诜謩e求clipXimage010的值

  小結(jié):ⅰ)畫(huà)終邊,求終邊與單位圓交點(diǎn)的坐標(biāo),算比值

 、)誘導(dǎo)公式(一)

 、廴鬰lipXimage012,試寫(xiě)出角clipXimage002[2]的值。

 、苋鬰lipXimage015,不求值,試判斷clipXimage017的符號(hào)

 、萑鬰lipXimage019,則clipXimage021為第象限的角、

  例1、已知角clipXimage002[3]的終邊過(guò)點(diǎn)clipXimage024,求clipXimage026之值

  若P點(diǎn)的坐標(biāo)變?yōu)閏lipXimage028,求clipXimage030的值

  小結(jié):任意角三角函數(shù)的等價(jià)定義(終邊定義法)

  例2、一物體A從點(diǎn)clipXimage032出發(fā),在單位圓上沿逆時(shí)針?lè)较蜃鲃蛩賵A周運(yùn)動(dòng),若經(jīng)過(guò)的弧長(zhǎng)為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標(biāo)。若該物體作圓周運(yùn)動(dòng)的圓的半徑變?yōu)閏lipXimage006[1],如何用clipXimage034[2]來(lái)表示物體A所在位置的坐標(biāo)?

  小結(jié):可以采用三角函數(shù)模型來(lái)刻畫(huà)圓周運(yùn)動(dòng)

  五、拓展探究

  問(wèn)題8:當(dāng)角clipXimage002[4]的終邊繞頂點(diǎn)O作圓周運(yùn)動(dòng)時(shí),角clipXimage002[5]的終邊與單位圓的交點(diǎn)clipXimage039的坐標(biāo)clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數(shù)模型嗎?

  思考:引入平面直角坐標(biāo)系后,我們可以把圓周運(yùn)動(dòng)用數(shù)來(lái)刻畫(huà),這是將“形”轉(zhuǎn)化成為“數(shù)”;角clipXimage002[7]正弦值是一個(gè)數(shù),你能借助平面直角坐標(biāo)系和單位圓,用“形”來(lái)表示這個(gè)“數(shù)”嗎?角clipXimage002[8]余弦值、正切值呢?

  六、課堂小結(jié)

  問(wèn)題9:請(qǐng)你談?wù)劚竟?jié)課的收獲有哪些?

  七、課后作業(yè)

  教材P21第6、7、8題

高一數(shù)學(xué)教案2

  一、教材

  首先談?wù)勎覍?duì)教材的理解,《兩條直線(xiàn)平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線(xiàn)平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對(duì)于直線(xiàn)平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線(xiàn)的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。

  二、學(xué)情

  教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢(shì),讓學(xué)生獨(dú)立思考探索。

  三、教學(xué)目標(biāo)

  根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

  (一)知識(shí)與技能

  掌握兩條直線(xiàn)平行與垂直的判定,能夠根據(jù)其判定兩條直線(xiàn)的位置關(guān)系。

  (二)過(guò)程與方法

  在經(jīng)歷兩條直線(xiàn)平行與垂直的判定過(guò)程中,提升邏輯推理能力。

  (三)情感態(tài)度價(jià)值觀

  在猜想論證的過(guò)程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。

  四、教學(xué)重難點(diǎn)

  我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的.。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:兩條直線(xiàn)平行與垂直的判定。本節(jié)課的教學(xué)難點(diǎn)是:兩條直線(xiàn)平行與垂直的判定的推導(dǎo)。

  五、教法和學(xué)法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。

  六、教學(xué)過(guò)程

  下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。

  (一)新課導(dǎo)入

  首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線(xiàn)的傾斜角與斜率并順勢(shì)提問(wèn):能否通過(guò)直線(xiàn)的斜率,來(lái)判斷兩條直線(xiàn)的位置關(guān)系呢?

  利用上節(jié)課所學(xué)的知識(shí)進(jìn)行導(dǎo)入,很好的克服學(xué)生的畏難情緒。

  (二)新知探索

  接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。

高一數(shù)學(xué)教案3

  一、教材

  《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線(xiàn)和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線(xiàn)的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)揭示了知識(shí)的發(fā)生過(guò)程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類(lèi)討論、類(lèi)比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

  二、學(xué)情

  學(xué)生初中已經(jīng)接觸過(guò)直線(xiàn)與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過(guò)程中掌握了點(diǎn)的坐標(biāo)、直線(xiàn)的方程、圓的方程以及點(diǎn)到直線(xiàn)的距離公式;掌握利用方程組的方法來(lái)求直線(xiàn)的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

  三、教學(xué)目標(biāo)

  (一)知識(shí)與技能目標(biāo)

  能夠準(zhǔn)確用圖形表示出直線(xiàn)與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線(xiàn)的距離的方法簡(jiǎn)單判斷出直線(xiàn)與圓的關(guān)系。

  (二)過(guò)程與方法目標(biāo)

  經(jīng)歷操作、觀察、探索、總結(jié)直線(xiàn)與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

  (三)情感態(tài)度價(jià)值觀目標(biāo)

  激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。

  四、教學(xué)重難點(diǎn)

  (一)重點(diǎn)

  用解析法研究直線(xiàn)與圓的位置關(guān)系。

  (二)難點(diǎn)

  體會(huì)用解析法解決問(wèn)題的數(shù)學(xué)思想。

  五、教學(xué)方法

  根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺(tái),通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問(wèn)題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。

  六、教學(xué)過(guò)程

  (一)導(dǎo)入新課

  教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?

  教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線(xiàn)與圓的位置關(guān)系,將所想到的航行路線(xiàn)轉(zhuǎn)化成數(shù)學(xué)簡(jiǎn)圖,即相交、相切、相離。

  設(shè)計(jì)意圖:在已有的`知識(shí)基礎(chǔ)上,提出新的問(wèn)題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  (二)新課教學(xué)——探究新知

  教師提問(wèn)如何判斷直線(xiàn)與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的贊賞,又要有對(duì)錯(cuò)誤見(jiàn)解的分析及對(duì)該學(xué)生的鼓勵(lì)。

  判斷方法:

  (1)定義法:看直線(xiàn)與圓公共點(diǎn)個(gè)數(shù)

  即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

  (2)比較法:圓心到直線(xiàn)的距離d與圓的半徑r做比較,

  (三)合作探究——深化新知

  教師進(jìn)一步拋出疑問(wèn),對(duì)比兩種方法,由學(xué)生觀察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線(xiàn)與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

  已知直線(xiàn)3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

  讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

  當(dāng)已知了直線(xiàn)與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線(xiàn)的距離d,他的本質(zhì)是點(diǎn)到直線(xiàn)的距離,便可以直接利用點(diǎn)到直線(xiàn)的距離公式求d。類(lèi)比前面所學(xué)利用直線(xiàn)方程求兩直線(xiàn)交點(diǎn)的方法,聯(lián)立直線(xiàn)與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數(shù)確定直線(xiàn)與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。

  (四)歸納總結(jié)——鞏固新知

  為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

  可由方程組的解的不同情況來(lái)判斷:

  當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相交;

  當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相切;

  當(dāng)方程組沒(méi)有實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相離。

  活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線(xiàn)與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。

  (五)小結(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會(huì)以口頭提問(wèn)的方式:

  (1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  (2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?

  設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。

  作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡(jiǎn)捷,明確本節(jié)課主要用比較d與r的關(guān)系來(lái)解決這類(lèi)問(wèn)題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。

  七、板書(shū)設(shè)計(jì)

  我的板書(shū)本著簡(jiǎn)介、直觀、清晰的原則,這就是我的板書(shū)設(shè)計(jì)。

高一數(shù)學(xué)教案4

  一:【課前預(yù)習(xí)】

  (一):【知識(shí)梳理】

  1.直角三角形的邊角關(guān)系(如圖)

  (1)邊的關(guān)系(勾股定理):AC2+BC2=AB2;

  (2)角的關(guān)系:B=

  (3)邊角關(guān)系:

 、伲

 、冢轰J角三角函數(shù):

  A的正弦= ;

  A的余弦= ,

  A的正切=

  注:三角函數(shù)值是一個(gè)比值.

  2.特殊角的三角函數(shù)值.

  3.三角函數(shù)的關(guān)系

  (1) 互為余角的三角函數(shù)關(guān)系.

  sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

  (2) 同角的三角函數(shù)關(guān)系.

  平方關(guān)系:sin2 A+cos2A=l

  4.三角函數(shù)的大小比較

 、僬、正切是增函數(shù).三角函數(shù)值隨角的增大而增大,隨角的減小而減小.

 、谟嘞沂菧p函數(shù).三角函數(shù)值隨角的增大而減小,隨角的減小而增大。

  (二):【課前練習(xí)】

  1.等腰直角三角形一個(gè)銳角的余弦為( )

  A. D.l

  2.點(diǎn)M(tan60,-cos60)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)M的坐標(biāo)是( )

  3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( )

  4.已知A為銳角,且cosA0.5,那么( )

  A.060 B.6090 C.030 D.3090

  二:【經(jīng)典考題剖析】

  1.如圖,在Rt△ABC中,C=90,A=45,點(diǎn)D在AC上,BDC=60,AD=l,求BD、DC的長(zhǎng).

  2.先化簡(jiǎn),再求其值, 其中x=tan45-cos30

  3. 計(jì)算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

  4.比較大小(在空格處填寫(xiě)或或=)

  若=45○,則sin________cos

  若45○,則sin cos

  若45,則 sin cos.

  5.⑴如圖①、②銳角的正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的`規(guī)律;

 、聘鶕(jù)你探索到的規(guī)律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小.

  三:【課后訓(xùn)練】

  1. 2sin60-cos30tan45的結(jié)果為( )

  A. D.0

  2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( )

  A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形

  3.如圖,在平面直角坐標(biāo)系中,已知A(3,0)點(diǎn)B(0,-4),則cosOAB等于__________

  4.cos2+sin242○ =1,則銳角=______.

  5.在下列不等式中,錯(cuò)誤的是( )

  A.sin45○sin30○;B.cos60○tan30○;D.cot30○

  6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是()

  7.如圖所示,在菱形ABCD中,AEBC于 E點(diǎn),EC=1,B=30,求菱形ABCD的周長(zhǎng).

  8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

  9.如圖 ,某風(fēng)景區(qū)的湖心島有一涼亭A,其正東方向有一棵大樹(shù)B,小明想測(cè)量A/B之間的距離,他從湖邊的C處測(cè)得A在北偏西45方向上,測(cè)得B在北偏東32方向上,且量得B、C之間的距離為100米,根據(jù)上述測(cè)量結(jié)果,請(qǐng)你幫小明計(jì)算A山之間的距離是多少?(結(jié)果精確至1米.參考數(shù)據(jù):sin32○0.5299,cos32○0.8480)

  10.某住宅小區(qū)修了一個(gè)塔形建筑物AB,如圖所示,在與建筑物底部同一水平線(xiàn)的C處,測(cè)得點(diǎn)A的仰角為45,然后向塔方向前進(jìn)8米到達(dá)D處,在D處測(cè)得點(diǎn)A的仰角為60,求建筑物的高度.(精確0.1米)

高一數(shù)學(xué)教案5

  [三維目標(biāo)]

  一、知識(shí)與技能:

  1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系

  2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想

  3、了解集合元素個(gè)數(shù)問(wèn)題的討論說(shuō)明

  二、過(guò)程與方法

  通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法

  三、情感態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的'思維

  [教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀

  [教學(xué)方法]:講練結(jié)合法

  [授課類(lèi)型]:復(fù)習(xí)課

  [課時(shí)安排]:1課時(shí)

  [教學(xué)過(guò)程]:集合部分匯總

  本單元主要介紹了以下三個(gè)問(wèn)題:

  1,集合的含義與特征

  2,集合的表示與轉(zhuǎn)化

  3,集合的基本運(yùn)算

  一,集合的含義與表示(含分類(lèi))

  1,具有共同特征的對(duì)象的全體,稱(chēng)一個(gè)集合

  2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類(lèi)

高一數(shù)學(xué)教案6

  學(xué) 習(xí) 目 標(biāo)

  1明確空間直角坐標(biāo)系是如何建立;明確空間中任意一點(diǎn)如何表示;

  2 能夠在空間直角坐標(biāo)系中求出點(diǎn)坐標(biāo)

  教 學(xué) 過(guò) 程

  一 自 主 學(xué) 習(xí)

  1平面直角坐標(biāo)系建立方法,點(diǎn)坐標(biāo)確定過(guò)程、表示方法?

  2一個(gè)點(diǎn)在平面怎么表示?在空間呢?

  3關(guān)于一些對(duì)稱(chēng)點(diǎn)坐標(biāo)求法

  關(guān)于坐標(biāo)平面 對(duì)稱(chēng)點(diǎn) ;

  關(guān)于坐標(biāo)平面 對(duì)稱(chēng)點(diǎn) ;

  關(guān)于坐標(biāo)平面 對(duì)稱(chēng)點(diǎn) ;

  關(guān)于 軸對(duì)稱(chēng)點(diǎn) ;

  關(guān)于 對(duì)軸稱(chēng)點(diǎn) ;

  關(guān)于 軸對(duì)稱(chēng)點(diǎn) ;

  二 師 生 互動(dòng)

  例1在長(zhǎng)方體 中, , 寫(xiě)出 四點(diǎn)坐標(biāo)

  討論:若以 點(diǎn)為原點(diǎn),以射線(xiàn) 方向分別為 軸,建立空間直角坐標(biāo)系,則各頂點(diǎn)坐標(biāo)又是怎樣呢?

  變式:已知 ,描出它在空間位置

  例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標(biāo)系,并確定各頂點(diǎn)坐標(biāo)

  練1 建立適當(dāng)直角坐標(biāo)系,確定棱長(zhǎng)為3正四面體各頂點(diǎn)坐標(biāo)

  練2 已知 是棱長(zhǎng)為2正方體, 分別為 和 中點(diǎn),建立適當(dāng)空間直角坐標(biāo)系,試寫(xiě)出圖中各中點(diǎn)坐標(biāo)

  三 鞏 固 練 習(xí)

  1 關(guān)于空間直角坐標(biāo)系敘述正確是( )

  A 中 位置是可以互換

  B空間直角坐標(biāo)系中點(diǎn)與一個(gè)三元有序數(shù)組是一種一一對(duì)應(yīng)關(guān)系

  C空間直角坐標(biāo)系中三條坐標(biāo)軸把空間分為八個(gè)部分

  D某點(diǎn)在不同空間直角坐標(biāo)系中坐標(biāo)位置可以相同

  2 已知點(diǎn) ,則點(diǎn) 關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)坐標(biāo)為( )

  A B C D

  3 已知 三個(gè)頂點(diǎn)坐標(biāo)分別為 ,則 重心坐標(biāo)為( )

  A B C D

  4 已知 為平行四邊形,且 , 則頂點(diǎn) 坐標(biāo)

  5 方程 幾何意義是

  四 課 后 反 思

  五 課 后 鞏 固 練 習(xí)

  1 在空間直角坐標(biāo)系中,給定點(diǎn) ,求它分別關(guān)于坐標(biāo)平面,坐標(biāo)軸和原點(diǎn)對(duì)稱(chēng)點(diǎn)坐標(biāo)

  2 設(shè)有長(zhǎng)方體 ,長(zhǎng)、寬、高分別為 是線(xiàn)段 中點(diǎn)分別以 所在直線(xiàn)為 軸, 軸, 軸,建立空間直角坐標(biāo)系

 、徘 坐標(biāo);

 、魄 坐標(biāo);

高一數(shù)學(xué)教案7

  教學(xué)目標(biāo)

  1、掌握平面向量的數(shù)量積及其幾何意義;

  2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

  3、了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;

  4、掌握向量垂直的'條件、

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):平面向量的數(shù)量積定義

  教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

  教學(xué)過(guò)程

  1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

  則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、

  并規(guī)定0向量與任何向量的數(shù)量積為0、

  ×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?

  2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

  (1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定、

  (2)兩個(gè)向量的數(shù)量積稱(chēng)為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分、符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替、

  (3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因?yàn)槠渲衏osq有可能為0、

高一數(shù)學(xué)教案8

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

  教學(xué)重難點(diǎn)

  熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

  教學(xué)過(guò)程

  【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。

  【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問(wèn)題的關(guān)鍵是通過(guò)對(duì)實(shí)際問(wèn)題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

  一、基礎(chǔ)訓(xùn)練

  1、某種細(xì)菌在培養(yǎng)過(guò)程中,每20分鐘*一次一個(gè)*為兩個(gè),經(jīng)過(guò)3小時(shí),這種細(xì)菌由1個(gè)可繁殖成

  A、511B、512C、1023D、1024

  2、若一工廠的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為

  A、B、

  C、D、

  二、典型例題

  例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問(wèn)到第n期期末的本金和是多少?

  評(píng)析:此例來(lái)自一種常見(jiàn)的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時(shí)期到期,可以提出全部本金及利息,這是整取。計(jì)算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實(shí)際問(wèn)題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]

  例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲(chǔ)蓄,若每年利率q保持不變,且每年到期的存款本息均自動(dòng)轉(zhuǎn)為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?

  例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長(zhǎng)期頑強(qiáng)的斗爭(zhēng),到1999年底全地區(qū)的綠化率已達(dá)到30%,從20xx年開(kāi)始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹(shù),改造為綠洲,同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬。?wèn)經(jīng)過(guò)多少年的努力才能使全縣的綠洲面積超過(guò)60%。lg2=0.3

  例4、流行性感冒簡(jiǎn)稱(chēng)流感是由流感病毒引起的`急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門(mén)采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問(wèn)11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。

高一數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

  (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

  (2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.

  (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.

  2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

  3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

  (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

  二、重點(diǎn)難點(diǎn)分析

  (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

  (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀到抽象的.轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).

  三、教法建議

  (1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).

  (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

  函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱(chēng)的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱(chēng)性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱(chēng)只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高一數(shù)學(xué)教案10

  【學(xué)習(xí)目標(biāo)】

  1、感受數(shù)學(xué)探索的成功感,提高學(xué)習(xí)數(shù)學(xué)的興趣;

  2、經(jīng)歷誘導(dǎo)公式的探索過(guò)程,感悟由未知到已知、復(fù)雜到簡(jiǎn)單的數(shù)學(xué)轉(zhuǎn)化思想。

  3、能借助單位圓的對(duì)稱(chēng)性理解記憶誘導(dǎo)公式,能用誘導(dǎo)公式進(jìn)行簡(jiǎn)單應(yīng)用。

  【學(xué)習(xí)重點(diǎn)】三角函數(shù)的誘導(dǎo)公式的理解與應(yīng)用

  【學(xué)習(xí)難點(diǎn)】誘導(dǎo)公式的推導(dǎo)及靈活運(yùn)用

  【知識(shí)鏈接】(1)單位圓中任意角α的正弦、余弦的定義

 。2)對(duì)稱(chēng)性:已知點(diǎn)P(x,),那么,點(diǎn)P關(guān)于x軸、軸、原點(diǎn)對(duì)稱(chēng)的點(diǎn)坐標(biāo)

  【學(xué)習(xí)過(guò)程】

  一、預(yù)習(xí)自學(xué)

  閱讀書(shū)第19頁(yè)——20頁(yè)內(nèi)容,通過(guò)對(duì)-α、π-α、π+α、2π-α、α的終邊與單位圓的交點(diǎn)的對(duì)稱(chēng)性規(guī)律的探究,結(jié)合單位圓中任意角的正弦、余弦的定義,從中自我發(fā)現(xiàn)歸納出三角函數(shù)的誘導(dǎo)公式,并寫(xiě)出下列關(guān)系:

  (1)- 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的.正弦函數(shù)、余弦函數(shù)關(guān)系

  (2)角407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系

  (3)角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系

  (4)角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系

  二、合作探究

  探究1、求下列函數(shù)值,思考你用到了哪些三角函數(shù)誘導(dǎo)公式?試總結(jié)一下求任意角的三角函數(shù)值的過(guò)程與方法。

 。1) 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 (2) 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 (3)sin(-1650°);

  探究2: 化簡(jiǎn): 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式(先逐個(gè)化簡(jiǎn))

  探究3、利用單位圓求滿(mǎn)足 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的角的集合。

  三、學(xué)習(xí)小結(jié)

 。1)你能說(shuō)說(shuō)化任意角的正(余)弦函數(shù)為銳角正(余)弦函數(shù)的一般思路嗎?

 。2)本節(jié)學(xué)習(xí)涉及到什么數(shù)學(xué)思想方法?

 。3)我的疑惑有

  【達(dá)標(biāo)檢測(cè)】

  1、在單位圓中,角α的終邊與單位圓交于點(diǎn)P(- 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 , 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 ),

  則sin(-α)= ;cs(α±π)= ;cs(π-α)=

  2.求下列函數(shù)值:

 。1)sin( 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 )= ; (2) cs210&rd;=

  3、若csα=-1/2,則α的集合S=

高一數(shù)學(xué)教案11

  第二十四教時(shí)

  教材:倍角公式,推導(dǎo)和差化積及積化和差公式

  目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對(duì)公式靈活運(yùn)用的訓(xùn)練;同時(shí),讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對(duì)此有所了解。

  過(guò)程:

  一、 復(fù)習(xí)倍角公式、半角公式和萬(wàn)能公式的推導(dǎo)過(guò)程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教學(xué)與測(cè)試》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化簡(jiǎn)得:

  ∵ 即

  二、 積化和差公式的推導(dǎo)

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  這套公式稱(chēng)為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點(diǎn)在于將積式化為和差,有利于簡(jiǎn)化計(jì)算。(在告知公式前提下)

  例三、 求證:sin3sin3 + cos3cos3 = cos32

  證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右邊

  原式得證

  三、 和差化積公式的推導(dǎo)

  若令 + = , = ,則 , 代入得:

  這套公式稱(chēng)為和差化積公式,其特點(diǎn)是同名的'正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小結(jié):和差化積,積化和差

  五、 作業(yè):《課課練》P3637 例題推薦 13

  P3839 例題推薦 13

  P40 例題推薦 13

高一數(shù)學(xué)教案12

  學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對(duì)您有所幫助!

  教學(xué)目標(biāo)

  1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng).

  (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.

  (2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式.

  (3)已知一個(gè)數(shù)列的'遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的前幾項(xiàng).

  2.通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.

  3.通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.

  教學(xué)建議

  (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等.

  (2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類(lèi)似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.

  (3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助.

  (4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.

  (5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.

  (6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.

  上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!

高一數(shù)學(xué)教案13

  學(xué)習(xí)目標(biāo)

  1. 根據(jù)具體函數(shù)圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;

  2. 通過(guò)用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問(wèn)題的意識(shí).

  舊知提示 (預(yù)習(xí)教材P89~ P91,找出疑惑之處)

  復(fù)習(xí)1:什么叫零點(diǎn)?零點(diǎn)的等價(jià)性?零點(diǎn)存在性定理?

  對(duì)于函數(shù) ,我們把使 的實(shí)數(shù)x叫做函數(shù) 的零點(diǎn).

  方程 有實(shí)數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .

  如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線(xiàn),并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點(diǎn).

  復(fù)習(xí)2:一元二次方程求根公式? 三次方程? 四次方程?

  合作探究

  探究:有12個(gè)小球,質(zhì)量均勻,只有一個(gè)是比別的球重的,你用天平稱(chēng)幾次可以找出這個(gè)球的,要求次數(shù)越少越好.

  解法:第一次,兩端各放 個(gè)球,低的那一端一定有重球;

  第二次,兩端各放 個(gè)球,低的那一端一定有重球;

  第三次,兩端各放 個(gè)球,如果平衡,剩下的就是重球,否則,低的就是重球.

  思考:以上的方法其實(shí)這就是一種二分法的思想,采用類(lèi)似的方法,如何求 的零點(diǎn)所在區(qū)間?如何找出這個(gè)零點(diǎn)?

  新知:二分法的思想及步驟

  對(duì)于在區(qū)間 上連續(xù)不斷且 0的函數(shù) ,通過(guò)不斷的把函數(shù)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫二分法(bisection).

  反思: 給定精度,用二分法求函數(shù) 的零點(diǎn)近似值的步驟如何呢?

 、俅_定區(qū)間 ,驗(yàn)證 ,給定精度

 、谇髤^(qū)間 的中點(diǎn) ;[]

 、塾(jì)算 : 若 ,則 就是函數(shù)的零點(diǎn); 若 ,則令 (此時(shí)零點(diǎn) ); 若 ,則令 (此時(shí)零點(diǎn) );

 、芘袛嗍欠襁_(dá)到精度即若 ,則得到零點(diǎn)零點(diǎn)值a(或b);否則重復(fù)步驟②~④.

  典型例題

  例1 借助計(jì)算器或計(jì)算機(jī),利用二分法求方程 的近似解.

  練1. 求方程 的解的個(gè)數(shù)及其大致所在區(qū)間.

  練2.求函數(shù) 的'一個(gè)正數(shù)零點(diǎn)(精確到 )

  零點(diǎn)所在區(qū)間 中點(diǎn)函數(shù)值符號(hào) 區(qū)間長(zhǎng)度

  練3. 用二分法求 的近似值.

  課堂小結(jié)

 、 二分法的概念;②二分法步驟;③二分法思想.

  知識(shí)拓展

  高次多項(xiàng)式方程公式解的探索史料

  在十六世紀(jì),已找到了三次和四次函數(shù)的求根公式,但對(duì)于高于4次的函數(shù),類(lèi)似的努力卻一直沒(méi)有成功,到了十九世紀(jì),根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認(rèn)識(shí)到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運(yùn)算及根號(hào)表示的一般的公式解.同時(shí),即使對(duì)于3次和4次的代數(shù)方程,其公式解的表示也相當(dāng)復(fù)雜,一般來(lái)講并不適宜作具體計(jì)算.因此對(duì)于高次多項(xiàng)式函數(shù)及其它的一些函數(shù),有必要尋求其零點(diǎn)近似解的方法,這是一個(gè)在計(jì)算數(shù)學(xué)中十分重要的課題.

  學(xué)習(xí)評(píng)價(jià)

  1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).

  A. 至少有一個(gè)零點(diǎn) B. 只有一個(gè)零點(diǎn)

  C. 沒(méi)有零點(diǎn) D. 至多有一個(gè)零點(diǎn)

  2. 下列函數(shù)圖象與 軸均有交點(diǎn),其中不能用二分法求函數(shù)零點(diǎn)近似值的是().

  3. 函數(shù) 的零點(diǎn)所在區(qū)間為( ).

  A. B. C. D.

  4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實(shí)根,由計(jì)算器可算得 , , ,那么下一個(gè)有根區(qū)間為 .

  課后作業(yè)

  1.若函數(shù)f(x)是奇函數(shù),且有三個(gè)零點(diǎn)x1、x2、x3,則x1+x2+x3的值為()

  A.-1 B.0 C.3 D.不確定

  2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內(nèi)()

  A.至少有一實(shí)數(shù)根 B.至多有一實(shí)數(shù)根

  C.沒(méi)有實(shí)數(shù)根 D.有惟一實(shí)數(shù)根

  3.設(shè)函數(shù)f(x)=13x-lnx(x0)則y=f(x)()

  A.在區(qū)間1e,1,(1,e)內(nèi)均有零點(diǎn) B.在區(qū)間1e,1, (1,e)內(nèi)均無(wú)零點(diǎn)

  C.在區(qū)間1e,1內(nèi)有零點(diǎn);在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn)[]

  D.在區(qū)間1e,1內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)

  4.函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是()

  A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)

  5.若方程x2-3x+mx+m=0的兩根均在(0,+)內(nèi),則m的取值范圍是()

  A.m1 B.01 D.0

  6.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點(diǎn)有()

  A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)

  7.函數(shù)y=3x-1x2的一個(gè)零點(diǎn)是()

  A.-1 B.1 C.(-1,0) D.(1,0)

  8.函數(shù)f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點(diǎn)的個(gè)數(shù)為( )

  A.至多有一個(gè) B.有一個(gè)或兩個(gè) C.有且僅有一個(gè) D.一個(gè)也沒(méi)有

  9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個(gè)根所在的區(qū)間為()

  x -1 0 1 2 3

  ex 0.37 1 2.72 7.39 20.09

  A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

  10.求函數(shù)y=x3-2x2-x+2的零點(diǎn),并畫(huà)出它的簡(jiǎn)圖.

  【總結(jié)】

  20xx年數(shù)學(xué)網(wǎng)為小編在此為您收集了此文章高一數(shù)學(xué)教案:用二分法求方程的近似解,今后還會(huì)發(fā)布更多更好的文章希望對(duì)大家有所幫助,祝您在數(shù)學(xué)網(wǎng)學(xué)習(xí)愉快!

高一數(shù)學(xué)教案14

  案例背景:

  對(duì)數(shù)函數(shù)是函數(shù)中又一類(lèi)重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).

  案例敘述:

  (一).創(chuàng)設(shè)情境

  (師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

  反函數(shù)的實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).

  (提問(wèn)):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

  (學(xué)生): 是指數(shù)函數(shù),它是存在反函數(shù)的.

  (師):求反函數(shù)的步驟

  (由一個(gè)學(xué)生口答求反函數(shù)的過(guò)程):

  由 得 .又 的值域?yàn)?,

  所求反函數(shù)為 .

  (師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù).

  (二)新課

  1.(板書(shū)) 定義:函數(shù) 的反函數(shù) 叫做對(duì)數(shù)函數(shù).

  (師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識(shí)是什么?

  (教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),學(xué)生自主探究,合作交流)

  (學(xué)生)對(duì)數(shù)函數(shù)的定義域?yàn)?,對(duì)數(shù)函數(shù)的值域?yàn)?,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

  (在此基礎(chǔ)上,我們將一起來(lái)研究對(duì)數(shù)函數(shù)的圖像與性質(zhì).)

  2.研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)

  (提問(wèn))用什么方法來(lái)畫(huà)函數(shù)圖像?

  (學(xué)生1)利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫(huà)圖.

  (學(xué)生2)用列表描點(diǎn)法也是可以的。

  請(qǐng)學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫(huà)圖.

  (師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類(lèi)型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線(xiàn)分成兩種情況 和 ,并分別以 和 為例畫(huà)圖.

  具體操作時(shí),要求學(xué)生做到:

  (1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等).

  (2) 畫(huà)出直線(xiàn) .

  (3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱(chēng)點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱(chēng)為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

  學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫(huà)出

  和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫(huà)在同一坐標(biāo)系內(nèi))如圖:

  教師畫(huà)完圖后再利用電腦將 和 的圖像畫(huà)在同一坐標(biāo)系內(nèi),如圖:

  然后提出讓學(xué)生根據(jù)圖像說(shuō)出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說(shuō)明)

  3. 性質(zhì)

  (1) 定義域:

  (2) 值域:

  由以上兩條可說(shuō)明圖像位于 軸的右側(cè).

  (3)圖像恒過(guò)(1,0)

  (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱(chēng),也不關(guān)于 軸對(duì)稱(chēng).

  (5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的

  當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的.

  之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問(wèn)能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

  當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .

  學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書(shū)記下來(lái).

  最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的'一致性)

  對(duì)圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應(yīng)用.

  (三).簡(jiǎn)單應(yīng)用

  1. 研究相關(guān)函數(shù)的性質(zhì)

  例1. 求下列函數(shù)的定義域:

  (1) (2) (3)

  先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的條件限制.

  2. 利用單調(diào)性比較大小

  例2. 比較下列各組數(shù)的大小

  (1) 與 ; (2) 與 ;

  (3) 與 ; (4) 與 .

  讓學(xué)生先說(shuō)出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來(lái)比大小.最后讓學(xué)生以其中一組為例寫(xiě)出詳細(xì)的比較過(guò)程.

 三.拓展練習(xí)

  練習(xí):若 ,求 的取值范圍.

四.小結(jié)及作業(yè)

  案例反思:

  本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在教學(xué)上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

  在教學(xué)中一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地以反函數(shù)這條主線(xiàn)引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

高一數(shù)學(xué)教案15

  教學(xué)目標(biāo)

  1.理解分?jǐn)?shù)指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義。

  2.掌握有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),靈活的運(yùn)用乘法公式進(jìn)行有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn),會(huì)進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的相互轉(zhuǎn)化。

  教學(xué)重點(diǎn)

  1.分?jǐn)?shù)指數(shù)冪含義的理解。

  2.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)的'理解。

  3.有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn)。

  教學(xué)難點(diǎn)

  1.分?jǐn)?shù)指數(shù)冪含義的理解。

  2.有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn)。

  教學(xué)過(guò)程

  一.問(wèn)題情景

  上節(jié)課研究了根式的意義及根式的性質(zhì),那么根式與指數(shù)冪有什么關(guān)系?整數(shù)指數(shù)冪有那些運(yùn)算性質(zhì)?

  二.學(xué)生活動(dòng)

  1.說(shuō)出下列各式的意義,并指出其結(jié)果的指數(shù),被開(kāi)方數(shù)的指數(shù)及根指數(shù)三者之間的關(guān)系

 。1)=(2)=

  2.從上述問(wèn)題中,你能得到的結(jié)論為

  3.(a0)及(a0)能否化成指數(shù)冪的形式?

  三.?dāng)?shù)學(xué)理論

  正分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))

  負(fù)分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))

  1.規(guī)定:0的正分?jǐn)?shù)指數(shù)冪仍是0,即=0

  0的負(fù)分?jǐn)?shù)指數(shù)冪無(wú)意義。

  3.規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),因而整數(shù)指數(shù)冪的運(yùn)算性質(zhì)同樣適用于有理數(shù)指數(shù)冪。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.?dāng)?shù)學(xué)運(yùn)用

  例1求值:

 。1)(2)(3)(4)

  例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式(a0)

 。1)(2)

  例3化簡(jiǎn)

 。1)

 。2)(3)

  例4化簡(jiǎn)

  例5已知求(1)(2)

  五.回顧小結(jié)

  1.分?jǐn)?shù)指數(shù)冪的意義。=(0,m,n)

  無(wú)意義

  2.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)

  3.整式運(yùn)算律及乘法公式在分?jǐn)?shù)指數(shù)冪運(yùn)算中仍適用

  4.指數(shù)概念從整數(shù)指數(shù)冪推廣到有理數(shù)指數(shù)冪,同樣可以推廣到實(shí)數(shù)指數(shù)冪,請(qǐng)同學(xué)們閱讀P47的閱讀部分

  練習(xí)P47-48練習(xí)1,2,3,4

  六.課外作業(yè)

  P48習(xí)題2.2(1)2,4

【高一數(shù)學(xué)教案】相關(guān)文章:

高一數(shù)學(xué)教案11-05

高一優(yōu)秀數(shù)學(xué)教案09-28

人教版高一數(shù)學(xué)教案06-10

【熱】高一數(shù)學(xué)教案12-05

【推薦】高一數(shù)學(xué)教案12-04

高一數(shù)學(xué)教案【精】11-29

高一數(shù)學(xué)教案【推薦】11-30

【薦】高一數(shù)學(xué)教案11-27

高一數(shù)學(xué)教案【熱】12-03

【熱門(mén)】高一數(shù)學(xué)教案11-26