高一數(shù)學(xué)教案14篇
作為一位杰出的教職工,可能需要進(jìn)行教案編寫工作,編寫教案有利于我們科學(xué)、合理地支配課堂時間。教案應(yīng)該怎么寫呢?以下是小編幫大家整理的高一數(shù)學(xué)教案,希望能夠幫助到大家。
高一數(shù)學(xué)教案 篇1
一、教學(xué)目標(biāo)
。1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
。2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
。3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
。4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
。5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
。6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
二、教學(xué)重點難點:
重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.
三、教學(xué)過程
1.新課導(dǎo)入
在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)
。◤某踔薪佑|過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)
學(xué)生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)
教師提問:什么是命題?
。▽W(xué)生進(jìn)行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
。ń處熆隙送瑢W(xué)的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
。ń處熇猛队捌,和學(xué)生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?
。ㄆ毯笳埻瑢W(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)
。1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0
中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
命題可分為簡單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
。4)命題的.表示:用p ,q ,r ,s ,……來表示.
。ń處煾鶕(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)
我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.
給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .
在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
。1)5 ;
。2)0.5非整數(shù);
。3)內(nèi)錯角相等,兩直線平行;
。4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
。6)若ab=0 ,則a=0 .
。ㄗ寣W(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)
高一數(shù)學(xué)教案 篇2
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書—必修1》(人教A版)《1。2。1函數(shù)的概念》共3課時,本節(jié)課是第1課時。生活中的許多現(xiàn)象如物體運(yùn)動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識世界和預(yù)測未來的重要工具。函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認(rèn)識分三個階段:
。ㄒ唬┏踔袕倪\(yùn)動變化的角度來刻畫函數(shù),初步認(rèn)識正比例、反比例、一次和二次函數(shù);
。ǘ└咧杏眉吓c對應(yīng)的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);
(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1、有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。
初中用運(yùn)動變化的觀點對函數(shù)進(jìn)行定義的,它反映了歷人們對它的一種認(rèn)識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點研究函數(shù)打下了一定的'基礎(chǔ)。
2、不利條件
用集合與對應(yīng)的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學(xué)生的理解能力是一個挑戰(zhàn),是本節(jié)課教學(xué)的一個不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域。
1、知識與能力目標(biāo):
、拍軓募吓c對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
、评斫夂瘮(shù)的三要素的含義及其相互關(guān)系;
、菚蠛唵魏瘮(shù)的定義域和值域
2、過程與方法目標(biāo):
、磐ㄟ^豐富實例,使學(xué)生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
、圃诤瘮(shù)實例中,通過對關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。
3、情感、態(tài)度與價值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。
四、教學(xué)重點、難點分析
1、教學(xué)重點:對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);
重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運(yùn)動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認(rèn)識,也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點。
突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。
2、教學(xué)難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解。
難點依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負(fù)遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。
五、教法與學(xué)法分析
1、教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實例出發(fā),關(guān)注學(xué)生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2、學(xué)法分析
在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識。
高一數(shù)學(xué)教案 篇3
學(xué)習(xí)目標(biāo)
1. 根據(jù)具體函數(shù)圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解;
2. 通過用二分法求方程的近似解,使學(xué)生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.
舊知提示 (預(yù)習(xí)教材P89~ P91,找出疑惑之處)
復(fù)習(xí)1:什么叫零點?零點的等價性?零點存在性定理?
對于函數(shù) ,我們把使 的實數(shù)x叫做函數(shù) 的零點.
方程 有實數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .
如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點.
復(fù)習(xí)2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12個小球,質(zhì)量均勻,只有一個是比別的球重的,你用天平稱幾次可以找出這個球的,要求次數(shù)越少越好.
解法:第一次,兩端各放 個球,低的那一端一定有重球;
第二次,兩端各放 個球,低的那一端一定有重球;
第三次,兩端各放 個球,如果平衡,剩下的就是重球,否則,低的就是重球.
思考:以上的方法其實這就是一種二分法的思想,采用類似的方法,如何求 的零點所在區(qū)間?如何找出這個零點?
新知:二分法的思想及步驟
對于在區(qū)間 上連續(xù)不斷且 0的函數(shù) ,通過不斷的把函數(shù)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進(jìn)而得到零點近似值的方法叫二分法(bisection).
反思: 給定精度,用二分法求函數(shù) 的零點近似值的步驟如何呢?
①確定區(qū)間 ,驗證 ,給定精度
②求區(qū)間 的中點 ;[]
、塾嬎 : 若 ,則 就是函數(shù)的零點; 若 ,則令 (此時零點 ); 若 ,則令 (此時零點 );
、芘袛嗍欠襁_(dá)到精度即若 ,則得到零點零點值a(或b);否則重復(fù)步驟②~④.
典型例題
例1 借助計算器或計算機(jī),利用二分法求方程 的近似解.
練1. 求方程 的解的個數(shù)及其大致所在區(qū)間.
練2.求函數(shù) 的一個正數(shù)零點(精確到 )
零點所在區(qū)間 中點函數(shù)值符號 區(qū)間長度
練3. 用二分法求 的近似值.
課堂小結(jié)
① 二分法的概念;②二分法步驟;③二分法思想.
知識拓展
高次多項式方程公式解的探索史料
在十六世紀(jì),已找到了三次和四次函數(shù)的求根公式,但對于高于4次的函數(shù),類似的努力卻一直沒有成功,到了十九世紀(jì),根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認(rèn)識到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運(yùn)算及根號表示的一般的公式解.同時,即使對于3次和4次的代數(shù)方程,其公式解的表示也相當(dāng)復(fù)雜,一般來講并不適宜作具體計算.因此對于高次多項式函數(shù)及其它的一些函數(shù),有必要尋求其零點近似解的方法,這是一個在計算數(shù)學(xué)中十分重要的課題.
學(xué)習(xí)評價
1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).
A. 至少有一個零點 B. 只有一個零點
C. 沒有零點 D. 至多有一個零點
2. 下列函數(shù)圖象與 軸均有交點,其中不能用二分法求函數(shù)零點近似值的是().
3. 函數(shù) 的零點所在區(qū)間為( ).
A. B. C. D.
4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實根,由計算器可算得 , , ,那么下一個有根區(qū)間為 .
課后作業(yè)
1.若函數(shù)f(x)是奇函數(shù),且有三個零點x1、x2、x3,則x1+x2+x3的.值為()
A.-1 B.0 C.3 D.不確定
2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內(nèi)()
A.至少有一實數(shù)根 B.至多有一實數(shù)根
C.沒有實數(shù)根 D.有惟一實數(shù)根
3.設(shè)函數(shù)f(x)=13x-lnx(x0)則y=f(x)()
A.在區(qū)間1e,1,(1,e)內(nèi)均有零點 B.在區(qū)間1e,1, (1,e)內(nèi)均無零點
C.在區(qū)間1e,1內(nèi)有零點;在區(qū)間(1,e)內(nèi)無零點[]
D.在區(qū)間1e,1內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點
4.函數(shù)f(x)=ex+x-2的零點所在的一個區(qū)間是()
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的兩根均在(0,+)內(nèi),則m的取值范圍是()
A.m1 B.01 D.0
6.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點有()
A.0個 B.1個 C.2個 D.3個
7.函數(shù)y=3x-1x2的一個零點是()
A.-1 B.1 C.(-1,0) D.(1,0)
8.函數(shù)f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點的個數(shù)為( )
A.至多有一個 B.有一個或兩個 C.有且僅有一個 D.一個也沒有
9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
10.求函數(shù)y=x3-2x2-x+2的零點,并畫出它的簡圖.
【總結(jié)】
20xx年數(shù)學(xué)網(wǎng)為小編在此為您收集了此文章高一數(shù)學(xué)教案:用二分法求方程的近似解,今后還會發(fā)布更多更好的文章希望對大家有所幫助,祝您在數(shù)學(xué)網(wǎng)學(xué)習(xí)愉快!
高一數(shù)學(xué)教案 篇4
教學(xué)目標(biāo):
1、掌握對數(shù)的運(yùn)算性質(zhì),并能理解推導(dǎo)這些法則的依據(jù)和過程;
2、能較熟練地運(yùn)用法則解決問題;
教學(xué)重點:
對數(shù)的運(yùn)算性質(zhì)
教學(xué)過程:
一、問題情境:
1、指數(shù)冪的運(yùn)算性質(zhì);
2、問題:對數(shù)運(yùn)算也有相應(yīng)的運(yùn)算性質(zhì)嗎?
二、學(xué)生活動:
1、觀察教材P59的表2—3—1,驗證對數(shù)運(yùn)算性質(zhì)、
2、理解對數(shù)的運(yùn)算性質(zhì)、
3、證明對數(shù)性質(zhì)、
三、建構(gòu)數(shù)學(xué):
1)引導(dǎo)學(xué)生驗證對數(shù)的運(yùn)算性質(zhì)、
2)推導(dǎo)和證明對數(shù)運(yùn)算性質(zhì)、
3)運(yùn)用對數(shù)運(yùn)算性質(zhì)解題、
探究:
、俸喴渍Z言表達(dá):“積的對數(shù)=對數(shù)的和”……
、谟袝r逆向運(yùn)用公式運(yùn)算:如
、壅鏀(shù)的取值范圍必須是:不成立;不成立、
、茏⒁猓,
四、數(shù)學(xué)運(yùn)用:
1、例題:
例1、(教材P60例4)求下列各式的'值:
。1);(2)125;(3)(補(bǔ)充)lg、
例2、(教材P60例4)已知,,求下列各式的值(結(jié)果保留4位小數(shù))
。1);(2)、
例3、用,,表示下列各式:
例4、計算:
。1);(2);(3)
2、練習(xí):
P60(練習(xí))1,2,4,5、
五、回顧小結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:對數(shù)的運(yùn)算法則,公式的逆向使用、
六、課外作業(yè):
P63習(xí)題5
補(bǔ)充:
1、求下列各式的值:
。1)6—3;(2)lg5+lg2;(3)3+、
2、用lgx,lgy,lgz表示下列各式:
。1)lg(xyz);(2)lg;(3);(4)、
3、已知lg2=0、3010,lg3=0、4771,求下列各對數(shù)的值(精確到小數(shù)點后第四位)
。1)lg6;(2)lg;(3)lg;(4)lg32、
高一數(shù)學(xué)教案 篇5
教學(xué)目標(biāo)
1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.
3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進(jìn)行辯證唯物主義的教育.
教學(xué)重點與難點
教學(xué)重點:函數(shù)單調(diào)性的概念.
教學(xué)難點:函數(shù)單調(diào)性的判定.
教學(xué)過程設(shè)計
一、引入新課
師:請同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。
師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
。c明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識的,又是新的知識,引起學(xué)生的注意.)
二、對概念的分析
。ò鍟n題:)
師:請同學(xué)們打開課本第51頁,請××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
(學(xué)生朗讀.)
師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學(xué)們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認(rèn)為是一致的.定義中的“當(dāng)x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!
(通過教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)
師:現(xiàn)在請同學(xué)們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.
。ㄖ笀D說明.)
師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
。ń處熤笀D說明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)……
。ú话言捳f完,指一名學(xué)生接著說完,讓學(xué)生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù).
(學(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認(rèn)識定義?
。▽W(xué)生思索.)
學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會學(xué)生如何深入理解一個概念,以培養(yǎng)學(xué)生分析問題,認(rèn)識問題的能力.
(教師在學(xué)生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當(dāng)加重語氣.在學(xué)生感到無從下手時,給以適當(dāng)?shù)奶崾荆?/p>
生:我認(rèn)為在定義中,有一個詞“給定區(qū)間”是定義中的`關(guān)鍵詞語.
師:很好,我們在學(xué)習(xí)任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學(xué)習(xí)幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?
生:不能.因為此時函數(shù)值是一個數(shù).
師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學(xué)過的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
。ㄔ趯W(xué)生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的增減性時必須指明相應(yīng)的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
(學(xué)生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。
師:如果是閉區(qū)間的話,能否取自區(qū)間端點?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個反例來說明“任意”呢?
。ㄗ寣W(xué)生思考片刻.)
生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時,有f(x1)>f(x2);當(dāng)x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
(教師通過一系列的設(shè)問,使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學(xué)生加深對定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
。ㄓ棉q證法的原理來解釋數(shù)學(xué)知識,同時用數(shù)學(xué)知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細(xì),思考問題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.
。ㄖ赋鲇枚x證明的必要性.)
師:怎樣用定義證明呢?請同學(xué)們思考后在筆記本上寫出證明過程.
。ń處熝惨,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)
師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當(dāng)x1<x2時,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個步驟,請同學(xué)們記。枰赋龅氖堑诙,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。
。▽W(xué)生的做法進(jìn)行分析,把證明過程步驟化,可以形成思維的定勢.在學(xué)生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認(rèn)為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認(rèn)為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.
上是減函數(shù).
。ń處熝惨暎畬W(xué)生證明中出現(xiàn)的問題給予點拔.可依據(jù)學(xué)生的問題,給出下面的提示:
(1)分式問題化簡方法一般是通分.
。2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個負(fù)數(shù)的時候,不等號方向要改變.
對學(xué)生的解答進(jìn)行簡單的分析小結(jié),點出學(xué)生在證明過程中所出現(xiàn)的問題,引起全體學(xué)生的重視.)
四、課堂小結(jié)
師:請同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
。ㄕ堃粋思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)
生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應(yīng)該注意證明的四個步驟.
五、作業(yè)
1.課本P53練習(xí)第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學(xué)設(shè)計說明
是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用.對學(xué)生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學(xué)生對此有一定的感性認(rèn)識,對概念的理解有一定好處,但另一方面學(xué)生也會覺得是已經(jīng)學(xué)過的知識,感覺乏味.因此,在設(shè)計教案時,加強(qiáng)了對概念的分析,希望能夠使學(xué)生認(rèn)識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對概念的分析是在引進(jìn)一個新概念時必須要做的,對概念的深入的正確的理解往往是學(xué)生認(rèn)知過程中的難點.因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學(xué)生對如何學(xué)會、弄懂一個概念有初步的認(rèn)識,并且在以后的學(xué)習(xí)中學(xué)有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個難點,學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習(xí)的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學(xué)作一定的鋪墊.
高一數(shù)學(xué)教案 篇6
一、教材分析
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析
1、理解函數(shù)的概念,會用函數(shù)的`定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
高一數(shù)學(xué)教案 篇7
一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析
普通高中課標(biāo)教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點,正是在這種建立和運(yùn)用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學(xué)內(nèi)容是函數(shù)零點的定義和函數(shù)零點存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時也為后續(xù)學(xué)習(xí)的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學(xué)好本節(jié)意義重大。
函數(shù)在數(shù)學(xué)中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機(jī)地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點來研究方程,就是將局部放入整體中研究,進(jìn)而對整體和局部都有一個更深層次的理解,并學(xué)會用聯(lián)系的觀點解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識的聯(lián)系奠定基礎(chǔ)。
二、教學(xué)目標(biāo)分析
本節(jié)內(nèi)容包含三大知識點:
一、函數(shù)零點的定義;
二、方程的根與函數(shù)零點的等價關(guān)系;
三、零點存在性定理。
結(jié)合本節(jié)課引入三大知識點的方法,設(shè)定本節(jié)課的知識與技能目標(biāo)如下:
1.結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;
2.結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.
本節(jié)課是學(xué)生在學(xué)習(xí)了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識的基礎(chǔ)上,通過對特殊函數(shù)圖象的分析進(jìn)行展開的,是培養(yǎng)學(xué)生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。
結(jié)合本節(jié)課教學(xué)主線的設(shè)計,設(shè)定本節(jié)課的過程與方法目標(biāo)如下:
1.通過化歸與轉(zhuǎn)化思想的引導(dǎo),培養(yǎng)學(xué)生從已有認(rèn)知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習(xí)慣;
2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學(xué)生主動應(yīng)用數(shù)學(xué)思想的意識;
3.通過習(xí)題與探究知識的相關(guān)性設(shè)置,引導(dǎo)學(xué)生深入探究得出判斷函數(shù)的零點個數(shù)和所在區(qū)間的'方法;
4.通過對函數(shù)與方程思想的不斷剖析,促進(jìn)學(xué)生對知識靈活應(yīng)用的能力。
由于本節(jié)課將以教師引導(dǎo),學(xué)生探究為主體形式,故設(shè)定本節(jié)課的情感、態(tài)度與價值觀目標(biāo)如下:
1.讓學(xué)生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時的意義與價值;
2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣。
3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感。
三、教學(xué)問題診斷
學(xué)生具備的認(rèn)知基礎(chǔ):
1.基本初等函數(shù)的圖象和性質(zhì);
2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;
3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識。
學(xué)生欠缺的實際能力:
1.主動應(yīng)用數(shù)形結(jié)合思想解決問題的意識還不強(qiáng);
2.將未知問題已知化,將復(fù)雜問題簡單化的化歸意識淡薄;
3.從直觀到抽象的概括總結(jié)能力還不夠;
4.概念的內(nèi)涵與外延的探究意識有待提高。
對本節(jié)課的教學(xué),教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點的。這樣處理,主要是想讓學(xué)生在原有二次函數(shù)的認(rèn)知基礎(chǔ)上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點,再來理解其他復(fù)雜的函數(shù)零點就會容易一些。但學(xué)生對如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學(xué)生感到平淡,激發(fā)不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數(shù)零點的必要性,理解不了方程根存在的本質(zhì)原因是零點的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點的一種條件的,如果不能有效地對該過程進(jìn)行引導(dǎo),容易出現(xiàn)學(xué)生被動接受,盲目記憶的結(jié)果,而喪失了對學(xué)生應(yīng)用數(shù)學(xué)思想方法的意識進(jìn)行培養(yǎng)的機(jī)會。
教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數(shù)并未多做說明,這就要求教師對該定理的內(nèi)涵和外延要有清晰的把握,引導(dǎo)學(xué)生探究出只存在一個零點的條件,否則學(xué)生對定理的內(nèi)容很容易心存疑慮。
四、本節(jié)課的教法特點以及預(yù)期效果分析
本節(jié)課教法的幾大特點總結(jié)如下:
1.以問題為主線貫穿始終;
2.精心設(shè)置引導(dǎo)性的語言放手讓學(xué)生探究;
3.注重在引導(dǎo)學(xué)生探究問題解法的過程中滲透數(shù)學(xué)思想;
4.在探究過程中引入新知識點,在引入新知識點后適時歸納總結(jié),進(jìn)行探究階段性成果的應(yīng)用。
由于所設(shè)置的主線問題具有很高的探究價值,所以預(yù)期學(xué)生熱情會很高,積極性調(diào)動起來,那整節(jié)課才能活起來;
由于為了更好地組織學(xué)生探究所設(shè)置的引導(dǎo)性語言,重在去挖掘?qū)W生內(nèi)心真實的想法和他們最真實體會到的困難,所以通過學(xué)生活動會更多地暴露他們在基礎(chǔ)知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;
因為在探究過程中不斷滲透數(shù)學(xué)思想,學(xué)生對親身經(jīng)歷的解題方法就會有更深的體會,主動應(yīng)用數(shù)學(xué)思想的意識在上升,對于主線問題也應(yīng)該可以迎刃而解;
因為在探究過程中引入新知識點,學(xué)生對新知識產(chǎn)生的必要性會有更深刻的體會和認(rèn)識,同時在新知識產(chǎn)生后,又適時地加以應(yīng)用,學(xué)生對新知識的應(yīng)用能力不斷提高。
高一數(shù)學(xué)教案 篇8
一、教學(xué)目標(biāo):
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認(rèn)識到生活中處處可以遇到變量間的依賴關(guān)系.能夠利用初中對函數(shù)的認(rèn)識,了解依賴關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系.
2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度.
二、教學(xué)重點:
在于讓學(xué)生領(lǐng)悟生活中處處有變量,變量之間充滿了關(guān)系
教學(xué)難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度
三、教學(xué)方法:
探究交流法
四、教學(xué)過程
(一)、知識探索:
閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。
在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關(guān)系,兩種依賴關(guān)系都有函數(shù)關(guān)系嗎?
問題小結(jié):
1.生活中變量及變量之間的依賴關(guān)系隨處可見,并非有依賴關(guān)系的'兩個變量都有函數(shù)關(guān)系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應(yīng),才稱它們之間有函數(shù)關(guān)系。
2.構(gòu)成函數(shù)關(guān)系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應(yīng)。
3.確定變量的依賴關(guān)系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數(shù)概念
1.初中關(guān)于函數(shù)的定義:
2.從集合的觀點出發(fā),函數(shù)定義:
給定兩個非空數(shù)集A和B,如果按照某個對應(yīng)關(guān)系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的數(shù)f(x)與之對應(yīng),那么就把這種對應(yīng)關(guān)系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習(xí)慣上我們稱y是x的函數(shù)。
定義域,值域,對應(yīng)法則
4.函數(shù)值
當(dāng)x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。
高一數(shù)學(xué)教案 篇9
教學(xué)目標(biāo)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的.常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學(xué)重難點
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學(xué)過程
一、知識歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個特定時段內(nèi),以點E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點E正北55海里處有一個雷達(dá)觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東。
高一數(shù)學(xué)教案 篇10
教學(xué)目標(biāo)
1.理解分?jǐn)?shù)指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義。
2.掌握有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),靈活的運(yùn)用乘法公式進(jìn)行有理數(shù)指數(shù)冪的運(yùn)算和化簡,會進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的相互轉(zhuǎn)化。
教學(xué)重點
1.分?jǐn)?shù)指數(shù)冪含義的理解。
2.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)的理解。
3.有理數(shù)指數(shù)冪的運(yùn)算和化簡。
教學(xué)難點
1.分?jǐn)?shù)指數(shù)冪含義的理解。
2.有理數(shù)指數(shù)冪的運(yùn)算和化簡。
教學(xué)過程
一.問題情景
上節(jié)課研究了根式的意義及根式的性質(zhì),那么根式與指數(shù)冪有什么關(guān)系?整數(shù)指數(shù)冪有那些運(yùn)算性質(zhì)?
二.學(xué)生活動
1.說出下列各式的`意義,并指出其結(jié)果的指數(shù),被開方數(shù)的指數(shù)及根指數(shù)三者之間的關(guān)系
。1)=(2)=
2.從上述問題中,你能得到的結(jié)論為
3.(a0)及(a0)能否化成指數(shù)冪的形式?
三.?dāng)?shù)學(xué)理論
正分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))
負(fù)分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))
1.規(guī)定:0的正分?jǐn)?shù)指數(shù)冪仍是0,即=0
0的負(fù)分?jǐn)?shù)指數(shù)冪無意義。
3.規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),因而整數(shù)指數(shù)冪的運(yùn)算性質(zhì)同樣適用于有理數(shù)指數(shù)冪。
即=(1)
=(2)其中s,tQ,a0,b0
=(3)
四.?dāng)?shù)學(xué)運(yùn)用
例1求值:
(1)(2)(3)(4)
例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式(a0)
。1)(2)
例3化簡
。1)
。2)(3)
例4化簡
例5已知求(1)(2)
五.回顧小結(jié)
1.分?jǐn)?shù)指數(shù)冪的意義。=(0,m,n)
無意義
2.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)
3.整式運(yùn)算律及乘法公式在分?jǐn)?shù)指數(shù)冪運(yùn)算中仍適用
4.指數(shù)概念從整數(shù)指數(shù)冪推廣到有理數(shù)指數(shù)冪,同樣可以推廣到實數(shù)指數(shù)冪,請同學(xué)們閱讀P47的閱讀部分
練習(xí)P47-48練習(xí)1,2,3,4
六.課外作業(yè)
P48習(xí)題2.2(1)2,4
高一數(shù)學(xué)教案 篇11
一、學(xué)習(xí)目標(biāo):
知識與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義, 并會應(yīng)用性質(zhì)解決問題
過程與方法:能應(yīng)用文字語言、符號語言、圖形語言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理
情感態(tài)度與價值觀:通過自主學(xué)習(xí)、主動參與、積極探究的學(xué)習(xí)過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會事物之間相互轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義思想方法
二、學(xué)習(xí)重、難點
學(xué)習(xí)重點: 直線與平面、平面與平面平行的性質(zhì)及其應(yīng)用
學(xué)習(xí)難點: 將空間問題轉(zhuǎn)化為平面問題的方法,
三、學(xué)法指導(dǎo)及要求:
1、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考、獨立規(guī)范作答,不會的先繞過,做好記號。
2、把學(xué)案中自己易忘、易出錯的知識點和疑難問題以及解題方法規(guī)律,及時整理在解題本,多復(fù)習(xí)記憶。3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點班完成全部,平行班完成A.B類題
四、知識鏈接:
1.空間直線與直線的位置關(guān)系
2.直線與平面的位置關(guān)系
3.平面與平面的位置關(guān)系
4.直線與平面平行的判定定理的符號表示
5.平面與平面平行的判定定理的符號表示
五、學(xué)習(xí)過程:
A問題1:
1)如果一條直線與一個平面平行,那么這條直線與這個平面內(nèi)的直線有哪些位置關(guān)系?
(觀察長方體)
2)如果一條直線和一個平面平行,如何在這個平面內(nèi)做一條直線與已知直線平行?
(可觀察教室內(nèi)燈管和地面)
A問題2: 一條直線與平面平行,這條直線和這個平面內(nèi)直線的位置關(guān)系有幾種可能?
A問題3:如果一條直線 與平面平行,在什么條件下直線 與平面內(nèi)的直線平行呢?
由于直線 與平面內(nèi)的任何直線無公共點,所以過直線 的`某一平面,若與平面相交,則直線 就平行于這條交線
B自主探究1:已知: ∥, ,=b。求證: ∥b。
直線與平面平行的性質(zhì)定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行
符號語言:
線面平行性質(zhì)定理作用:證明兩直線平行
思想:線面平行 線線平行
例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經(jīng)過木料表面ABCD 內(nèi)的一點P和棱BC將木料鋸開,應(yīng)怎樣畫線?(2)所畫的線和面AC有什么關(guān)系?
例2:已知平面外的兩條平行直線中的一條平行于這個平面,求證:另一條也平行于這個平面。
問題5:兩個平面平行,那么其中一個平面內(nèi)的直線與另一平面有什么樣的關(guān)系?兩個平面平行,那么其中一個平面內(nèi)的直線與另一平面內(nèi)的直線有何關(guān)系?
自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b
平面與平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行
符號語言:
面面平行性質(zhì)定理作用:證明兩直線平行
思想:面面平行 線線平行
例3 求證:夾在兩個平行平面間的平行線段相等
六、達(dá)標(biāo)檢測:
A1.61頁練習(xí)
A2.下列判斷正確的是( )
A. ∥, ,則 ∥b B. =P,b ,則 與b不平行
C. ,則a∥ D. ∥,b∥,則 ∥b
B3.直線 ∥平面,P,過點P平行于 的直線( )
A.只有一條,不在平面內(nèi) B.有無數(shù)條,不一定在內(nèi)
C.只有一條,且在平面內(nèi) D.有無數(shù)條,一定在內(nèi)
B4.下列命題錯誤的是 ( )
A. 平行于同一條直線的兩個平面平行或相交
B. 平行于同一個平面的兩個平面平行
C. 平行于同一條直線的兩條直線平行
D. 平行于同一個平面的兩條直線平行或相交
B5. 平行四邊形EFGH的四個頂點E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )
A. EH∥BD,BD不平行與FG
B. FG∥BD,EH不平行于BD
C. EH∥BD,F(xiàn)G∥BD
D. 以上都不對
B6.若直線 ∥b, ∥平面,則直線b與平面的位置關(guān)系是
B7一個平面上有兩點到另一個平面的距離相等,則這兩個平面
七、小結(jié)與反思:
高一數(shù)學(xué)教案 篇12
目標(biāo):
1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;
2.讓學(xué)生了解函數(shù)的零點與方程根的聯(lián)系 ;
3.讓學(xué)生認(rèn)識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點中的作用 ;
4。培養(yǎng)學(xué)生動手操作的能力 。
二、教學(xué)重點、難點
重點:零點的概念及存在性的判定;
難點:零點的確定。
三、復(fù)習(xí)引入
例1:判斷方程 x2-x-6=0 解的存在。
分析:考察函數(shù)f(x)= x2-x-6, 其
圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,
點B (0,-6)與點C(4,6)之間的'那部分曲線
必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點
X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至
少有點X2,使得f( X2)=0,而方程至多有兩
個解,所以在(-4,0),(0,4)內(nèi)各有一解
定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的零點
抽象概括
y=f(x)的圖像與x軸的交點的橫坐標(biāo)叫做該函數(shù)的零點,即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個零點,即f(x)=0在 (a,b)內(nèi)至少有一個實數(shù)解。
f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點
所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點
注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的實數(shù)解的存在性,并不能判斷具體有多少個解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實數(shù)解;
3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;
4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。
四、知識應(yīng)用
例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實數(shù)解?為什么?
解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點,即f(x)=0在區(qū)間[-1,0]內(nèi)有實數(shù)解
練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點?
例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。
解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個交點,在( -,2)內(nèi)也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。
練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內(nèi),求m的取值范圍。
五、課后作業(yè)
p133第2,3題
高一數(shù)學(xué)教案 篇13
一、教材的地位和作用
本節(jié)課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內(nèi)容是投影和三視圖,這部分知識是立體幾何的基礎(chǔ)之一,一方面它是對上一節(jié)空間幾何體結(jié)構(gòu)特征的再一次強(qiáng)化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎(chǔ)和訓(xùn)練學(xué)生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內(nèi)容之一,常常結(jié)合給出的三視圖求給定幾何體的表面積或體積設(shè)置在選擇或填空中。同時,三視圖在工程建設(shè)、機(jī)械制造中有著廣泛應(yīng)用,同時也為學(xué)生進(jìn)入高一層學(xué)府學(xué)習(xí)有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學(xué)目標(biāo)
。1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進(jìn)一步熟悉簡單幾何體的結(jié)構(gòu)特征。
。2)過程與方法:通過直觀感知,操作確認(rèn),提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識。
。3)情感、態(tài)度與價值觀:讓感受數(shù)學(xué)就在身邊,提高學(xué)生學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生相互交流、相互合作的精神。
三、設(shè)計思路
本節(jié)課的主要任務(wù)是引導(dǎo)學(xué)生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復(fù)雜過程。直觀感知操作確認(rèn)是新課程幾何課堂的一個突出特點,也是這節(jié)課的設(shè)計思路。通過大量的多媒體直觀,實物直觀使學(xué)生獲得了對三視圖的感性認(rèn)識,通過學(xué)生的.觀察思考,動手實踐,操作練習(xí),實現(xiàn)認(rèn)知從感性認(rèn)識上升為理性認(rèn)識。培養(yǎng)學(xué)生的空間想象能力,幾何直觀能力為學(xué)習(xí)立體幾何打下基礎(chǔ)。
教學(xué)的重點、難點
(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應(yīng)遵循的“長對正、高平齊、寬相等”的原則。
。ǘ╇y點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學(xué)生現(xiàn)實分析
本節(jié)首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學(xué)生具有這方面的直接經(jīng)驗和基礎(chǔ)。投影和三視圖雖為高中新增內(nèi)容,但學(xué)生在初中有一定基礎(chǔ),在七年級上冊“從不同方向看”的基礎(chǔ)上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進(jìn)入高中后特別是再次學(xué)習(xí)和認(rèn)識了柱、錐、臺等幾何體的概念后,學(xué)生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側(cè)視圖、俯視圖的概念。這些概念的變化也說明了學(xué)生年齡特點和思維差異。
五、教學(xué)方法
(1)教學(xué)方法及教學(xué)手段
針對本節(jié)課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學(xué)法、啟導(dǎo)發(fā)現(xiàn)法。
在教學(xué)中,通過創(chuàng)設(shè)問題情境,充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,并引導(dǎo)啟發(fā)學(xué)生動眼、動腦、動手、同時采用多媒體的教學(xué)手段,加強(qiáng)直觀性和啟發(fā)性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
。2)學(xué)法指導(dǎo)
力爭在新課程要求的大背景下組織教學(xué),為學(xué)生創(chuàng)設(shè)良好的問題情境,留給學(xué)生充分的思考空間,在學(xué)生的辯證和討論前提下,發(fā)揮教師的概括和引領(lǐng)的作用。
高一數(shù)學(xué)教案 篇14
教學(xué)目標(biāo):①掌握對數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)
合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學(xué)重點與難點:對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計:
、睆(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
、查_始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的'大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0
調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當(dāng)0
∵5.1<5.9 loga5.1="">loga5.9
、)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案11-05
人教版高一數(shù)學(xué)教案06-10
【熱門】高一數(shù)學(xué)教案11-26
【薦】高一數(shù)學(xué)教案11-27
高一數(shù)學(xué)教案【熱門】11-28
高一數(shù)學(xué)教案【精】11-29
【精】高一數(shù)學(xué)教案12-01