丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

高一數(shù)學(xué)教案

時間:2022-11-06 15:27:47 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)教案15篇

  作為一名人民教師,總不可避免地需要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么優(yōu)秀的教案是什么樣的呢?以下是小編精心整理的高一數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數(shù)學(xué)教案15篇

高一數(shù)學(xué)教案1

  教材:邏輯聯(lián)結(jié)詞

  目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。

  過程

  一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞

  二、命題的概念:

  例:125 ① 3是12的.約數(shù) ② 0.5是整數(shù) ③

  定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。

  如:①②是真命題,③是假命題

  反例:3是12的約數(shù)嗎? x5 都不是命題

  不涉及真假(問題) 無法判斷真假

  上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。

  三、復(fù)合命題:

  1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的對角線互相 菱形的對角線互相垂直且菱形的

  垂直且平分⑤ 對角線互相平分

  (3)0.5非整數(shù)⑥ 非0.5是整數(shù)

  觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。

  3.其實,有些概念前面已遇到過

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、復(fù)合命題的構(gòu)成形式

  如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過的有以下三種:

  即: p或q (如 ④) 記作 pq

  p且q (如 ⑤) 記作 pq

  非p (命題的否定) (如 ⑥) 記作 p

  小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式

高一數(shù)學(xué)教案2

  經(jīng)典例題

  已知關(guān)于 的方程 的實數(shù)解在區(qū)間 ,求 的取值范圍。

  反思提煉:1.常見的四種指數(shù)方程的一般解法

 。1)方程 的解法:

 。2)方程 的'解法:

 。3)方程 的解法:

 。4)方程 的解法:

  2.常見的三種對數(shù)方程的一般解法

 。1)方程 的解法:

 。2)方程 的解法:

 。3)方程 的解法:

  3.方程與函數(shù)之間的轉(zhuǎn)化。

  4.通過數(shù)形結(jié)合解決方程有無根的問題。

  課后作業(yè):

  1.對正整數(shù)n,設(shè)曲線 在x=2處的切線與軸交點的縱坐標(biāo)為 ,則數(shù)列 的前n項和的公式是

  [答案] 2n+1-2

  [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

  f ′(2)=-n2n-1-2n=(-n-2)2n-1.

  在點x=2處點的縱坐標(biāo)為=-2n.

  ∴切線方程為+2n=(-n-2)2n-1(x-2).

  令x=0得,=(n+1)2n,

  ∴an=(n+1)2n,

  ∴數(shù)列ann+1的前n項和為2(2n-1)2-1=2n+1-2.

  2.在平面直角坐標(biāo)系 中,已知點P是函數(shù) 的圖象上的動點,該圖象在P處的切線 交軸于點M,過點P作 的垂線交軸于點N,設(shè)線段MN的中點的縱坐標(biāo)為t,則t的最大值是_____________

  解析:設(shè) 則 ,過點P作 的垂線

  ,所以,t在 上單調(diào)增,在 單調(diào)減, 。

高一數(shù)學(xué)教案3

  教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.

  教學(xué)目的:

 。1)通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

  (2)了解構(gòu)成函數(shù)的要素;

 。3)會求一些簡單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;

  教學(xué)重點:理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù);

  教學(xué)難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)過程:

  一、引入課題

  1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

  2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

 。1)炮彈的射高與時間的變化關(guān)系問題;

 。2)南極臭氧空洞面積與時間的變化關(guān)系問題;

 。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題

  備用實例:

  我國xxxx年4月份非典疫情統(tǒng)計:

  日期222324252627282930

  新增確診病例數(shù)1061058910311312698152101

  3.引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;

  4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.

  二、新課教學(xué)

 。ㄒ唬┖瘮(shù)的有關(guān)概念

  1.函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的.y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

  ○1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

  ○2函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.

  2.構(gòu)成函數(shù)的三要素:

  定義域、對應(yīng)關(guān)系和值域

  3.區(qū)間的概念

 。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

  (2)無窮區(qū)間;

 。3)區(qū)間的數(shù)軸表示.

  4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論

  (由學(xué)生完成,師生共同分析講評)

  (二)典型例題

  1.求函數(shù)定義域

  課本P20例1

  解:(略)

  說明:

  ○1函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例;

  ○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;

  ○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  鞏固練習(xí):課本P22第1題

  2.判斷兩個函數(shù)是否為同一函數(shù)

  課本P21例2

  解:(略)

  說明:

  ○1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

  ○2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  鞏固練習(xí):

  ○1課本P22第2題

  ○2判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?

  (1)f(x)=(x-1)0;g(x)=1

 。2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

 。ㄈ┱n堂練習(xí)

  求下列函數(shù)的定義域

 。1)

  (2)

 。3)

 。4)

 。5)

 。6)

  三、歸納小結(jié),強(qiáng)化思想

  從具體實例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。

  四、作業(yè)布置

  課本P28習(xí)題1.2(A組)第1—7題(B組)第1題

高一數(shù)學(xué)教案4

  [三維目標(biāo)]

  一、知識與技能:

  1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系

  2、了解集合的`運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想

  3、了解集合元素個數(shù)問題的討論說明

  二、過程與方法

  通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法

  三、情感態(tài)度與價值觀

  培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維

  [教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀

  [教學(xué)方法]:講練結(jié)合法

  [授課類型]:復(fù)習(xí)課

  [課時安排]:1課時

  [教學(xué)過程]:集合部分匯總

  本單元主要介紹了以下三個問題:

  1,集合的含義與特征

  2,集合的表示與轉(zhuǎn)化

  3,集合的基本運算

  一,集合的含義與表示(含分類)

  1,具有共同特征的對象的全體,稱一個集合

  2,集合按元素的個數(shù)分為:有限集和無窮集兩類

高一數(shù)學(xué)教案5

  1、知識與技能

  (1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);

  (2)理解任意角的三角函數(shù)不同的定義方法;

  (3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;

  (4)掌握并能初步運用公式一;

  (5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).

  2、過程與方法

  初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).

  3、情態(tài)與價值

  任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.

  本節(jié)利用單位圓上點的坐標(biāo)定義任意角的'正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.

  教學(xué)重難點

  重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

  難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.

高一數(shù)學(xué)教案6

  一、教學(xué)目標(biāo)

  1、知識與技能

 。1)通過實物操作,增強(qiáng)學(xué)生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

 。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

 。4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

  2、過程與方法

 。1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

 。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。

  3、情感態(tài)度與價值觀

 。1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。

 。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點、難點

  重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

  三、教學(xué)用具

 。1)學(xué)法:觀察、思考、交流、討論、概括。

 。2)實物模型、投影儀 四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭示課題

  1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。

  2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

  (二)、研探新知

  1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

  2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

  3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

 。1)有兩個面互相平行;

 。2)其余各面都是平行四邊形;

 。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

  5、提出問題:各種這樣的'棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?

  請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

  7、讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

  8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。

  9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  10、現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、課本P8,習(xí)題1.1 A組第1題。

  4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

  四、鞏固深化

  練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)

  課本P8 練習(xí)題1.1 B組第1題

  課外練習(xí) 課本P8 習(xí)題1.1 B組第2題

高一數(shù)學(xué)教案7

  一、教材分析

  (一)地位與作用

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

  (二)學(xué)情分析

  (1)學(xué)生已熟練掌握_________________。

  (2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強(qiáng)的抽象思維能力和演繹推理能力。

  (3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。

  (4)學(xué)生層次參次不齊,個體差異比較明顯。

  二、目標(biāo)分析

  新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機(jī)整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):

  (一)教學(xué)目標(biāo)

  (1)知識與技能

  使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。

  (2)過程與方法

  引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  (3)情感態(tài)度與價值觀

  在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  (二)重點難點

  本節(jié)課的教學(xué)重點是________________________,教學(xué)難點是_____________________。

  三、教法、學(xué)法分析

  (一)教法

  基于本節(jié)課的內(nèi)容特點和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:

  1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性.

  2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念.

  3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并順利地完成書面表達(dá).

  (二)學(xué)法

  在學(xué)法上我重視了:

  1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。

  2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  四、教學(xué)過程分析

  (一)教學(xué)過程設(shè)計

  教學(xué)是一個教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的'和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵、評價等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學(xué)。

  (1)創(chuàng)設(shè)情境,提出問題。

  新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生的思考空間,充分體現(xiàn)學(xué)生主體地位。

  (2)引導(dǎo)探究,建構(gòu)概念。

  數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過過程.

  (3)自我嘗試,初步應(yīng)用。

  有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究.

  (4)當(dāng)堂訓(xùn)練,鞏固深化。

  通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

  (5)小結(jié)歸納,回顧反思。

  小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?(2)通過本節(jié)課的學(xué)習(xí),你的體驗是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

  (二)作業(yè)設(shè)計

  作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.

高一數(shù)學(xué)教案8

  學(xué)習(xí)是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對您有所幫助!

  教學(xué)目標(biāo)

  1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.

  (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.

  (2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.

  (3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.

  2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.

  3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.

  教學(xué)建議

  (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.

  (2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.

  (3)由數(shù)列的通項公式寫出數(shù)列的.前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.

  (4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.

  (5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.

  (6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的.

  上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實際需要!

高一數(shù)學(xué)教案9

  一、教材分析

  本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書—必修1》(人教A版)《1。2。1函數(shù)的概念》共3課時,本節(jié)課是第1課時。生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識世界和預(yù)測未來的重要工具。函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識和研究工具,教學(xué)內(nèi)容中蘊涵著極其豐富的辯證思想。

  二、學(xué)生學(xué)習(xí)情況分析

  函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認(rèn)識分三個階段:

 。ㄒ唬┏踔袕倪\動變化的角度來刻畫函數(shù),初步認(rèn)識正比例、反比例、一次和二次函數(shù);

 。ǘ└咧杏眉吓c對應(yīng)的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);

 。ㄈ└咧杏脤(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。

  1、有利條件

  現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。

  初中用運動變化的觀點對函數(shù)進(jìn)行定義的,它反映了歷人們對它的一種認(rèn)識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點研究函數(shù)打下了一定的基礎(chǔ)。

  2、不利條件

  用集合與對應(yīng)的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學(xué)生的理解能力是一個挑戰(zhàn),是本節(jié)課教學(xué)的一個不利條件。

  三、教學(xué)目標(biāo)分析

  課標(biāo)要求:通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域。

  1、知識與能力目標(biāo):

 、拍軓募吓c對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;

 、评斫夂瘮(shù)的三要素的含義及其相互關(guān)系;

 、菚蠛唵魏瘮(shù)的定義域和值域

  2、過程與方法目標(biāo):

  ⑴通過豐富實例,使學(xué)生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;

 、圃诤瘮(shù)實例中,通過對關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。

  3、情感、態(tài)度與價值觀目標(biāo):

  感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的`辯證唯物主義觀點。

  四、教學(xué)重點、難點分析

  1、教學(xué)重點:對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);

  重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認(rèn)識,也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點。

  突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。

  2、教學(xué)難點:

  第一:從實際問題中提煉出抽象的概念;

  第二:符號“y=f(x)”的含義的理解。

  難點依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負(fù)遷移。

  突破難點:難點的突破要依托豐富的實例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。

  五、教法與學(xué)法分析

  1、教法分析

  本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實例出發(fā),關(guān)注學(xué)生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。

  2、學(xué)法分析

  在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識。

高一數(shù)學(xué)教案10

  一、學(xué)習(xí)目標(biāo):

  知識與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義, 并會應(yīng)用性質(zhì)解決問題

  過程與方法:能應(yīng)用文字語言、符號語言、圖形語言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理

  情感態(tài)度與價值觀:通過自主學(xué)習(xí)、主動參與、積極探究的學(xué)習(xí)過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會事物之間相互轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義思想方法

  二、學(xué)習(xí)重、難點

  學(xué)習(xí)重點: 直線與平面、平面與平面平行的性質(zhì)及其應(yīng)用

  學(xué)習(xí)難點: 將空間問題轉(zhuǎn)化為平面問題的方法,

  三、學(xué)法指導(dǎo)及要求:

  1、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考、獨立規(guī)范作答,不會的先繞過,做好記號。

  2、把學(xué)案中自己易忘、易出錯的知識點和疑難問題以及解題方法規(guī)律,及時整理在解題本,多復(fù)習(xí)記憶。3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點班完成全部,平行班完成A.B類題

  四、知識鏈接:

  1.空間直線與直線的位置關(guān)系

  2.直線與平面的位置關(guān)系

  3.平面與平面的位置關(guān)系

  4.直線與平面平行的判定定理的符號表示

  5.平面與平面平行的判定定理的符號表示

  五、學(xué)習(xí)過程:

  A問題1:

  1)如果一條直線與一個平面平行,那么這條直線與這個平面內(nèi)的直線有哪些位置關(guān)系?

  (觀察長方體)

  2)如果一條直線和一個平面平行,如何在這個平面內(nèi)做一條直線與已知直線平行?

  (可觀察教室內(nèi)燈管和地面)

  A問題2: 一條直線與平面平行,這條直線和這個平面內(nèi)直線的位置關(guān)系有幾種可能?

  A問題3:如果一條直線 與平面平行,在什么條件下直線 與平面內(nèi)的'直線平行呢?

  由于直線 與平面內(nèi)的任何直線無公共點,所以過直線 的某一平面,若與平面相交,則直線 就平行于這條交線

  B自主探究1:已知: ∥, ,=b。求證: ∥b。

  直線與平面平行的性質(zhì)定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行

  符號語言:

  線面平行性質(zhì)定理作用:證明兩直線平行

  思想:線面平行 線線平行

  例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經(jīng)過木料表面ABCD 內(nèi)的一點P和棱BC將木料鋸開,應(yīng)怎樣畫線?(2)所畫的線和面AC有什么關(guān)系?

  例2:已知平面外的兩條平行直線中的一條平行于這個平面,求證:另一條也平行于這個平面。

  問題5:兩個平面平行,那么其中一個平面內(nèi)的直線與另一平面有什么樣的關(guān)系?兩個平面平行,那么其中一個平面內(nèi)的直線與另一平面內(nèi)的直線有何關(guān)系?

  自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b

  平面與平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行

  符號語言:

  面面平行性質(zhì)定理作用:證明兩直線平行

  思想:面面平行 線線平行

  例3 求證:夾在兩個平行平面間的平行線段相等

  六、達(dá)標(biāo)檢測:

  A1.61頁練習(xí)

  A2.下列判斷正確的是( )

  A. ∥, ,則 ∥b B. =P,b ,則 與b不平行

  C. ,則a∥ D. ∥,b∥,則 ∥b

  B3.直線 ∥平面,P,過點P平行于 的直線( )

  A.只有一條,不在平面內(nèi) B.有無數(shù)條,不一定在內(nèi)

  C.只有一條,且在平面內(nèi) D.有無數(shù)條,一定在內(nèi)

  B4.下列命題錯誤的是 ( )

  A. 平行于同一條直線的兩個平面平行或相交

  B. 平行于同一個平面的兩個平面平行

  C. 平行于同一條直線的兩條直線平行

  D. 平行于同一個平面的兩條直線平行或相交

  B5. 平行四邊形EFGH的四個頂點E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )

  A. EH∥BD,BD不平行與FG

  B. FG∥BD,EH不平行于BD

  C. EH∥BD,F(xiàn)G∥BD

  D. 以上都不對

  B6.若直線 ∥b, ∥平面,則直線b與平面的位置關(guān)系是

  B7一個平面上有兩點到另一個平面的距離相等,則這兩個平面

  七、小結(jié)與反思:

高一數(shù)學(xué)教案11

  教學(xué)目標(biāo)

  1、掌握平面向量的數(shù)量積及其幾何意義;

  2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;

  3、了解用平面向量的數(shù)量積可以處理垂直的問題;

  4、掌握向量垂直的條件、

  教學(xué)重難點

  教學(xué)重點:平面向量的數(shù)量積定義

  教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用

  教學(xué)過程

  1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的`夾角是θ,

  則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、

  并規(guī)定0向量與任何向量的數(shù)量積為0、

  ×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負(fù)?

  2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?

  (1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定、

  (2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴(yán)格區(qū)分、符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替、

  (3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因為其中cosq有可能為0、

高一數(shù)學(xué)教案12

  一、教學(xué)目標(biāo)

  (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

 。2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

 。3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

  (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

 。5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;

  (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

  二、教學(xué)重點難點:

  重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.

  三、教學(xué)過程

  1.新課導(dǎo)入

  在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的.過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

  初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)

 。◤某踔薪佑|過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)

  學(xué)生舉例:平行四邊形的對角線互相平. ……(1)

  兩直線平行,同位角相等.…………(2)

  教師提問:“……相等的角是對頂角”是不是命題?……(3)

 。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)

  教師提問:什么是命題?

  (學(xué)生進(jìn)行回憶、思考.)

  概念總結(jié):對一件事情作出了判斷的語句叫做命題.

  (教師肯定了同學(xué)的回答,并作板書.)

  由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

 。ń處熇猛队捌,和學(xué)生討論以下問題.)

  例1 判斷以下各語句是不是命題,若是,判斷其真假:

  命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.

  2.講授新課

  大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

 。ㄆ毯笳埻瑢W(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)

 。1)什么叫做命題?

  可以判斷真假的語句叫做命題.

  判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0

  中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

  (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

  命題可分為簡單命題和復(fù)合命題.

  不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

  由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

  (4)命題的表示:用p ,q ,r ,s ,……來表示.

 。ń處煾鶕(jù)學(xué)生回答的情況作補充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)

  我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

  給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

  對于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .

  在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

 。1)5 ;

 。2)0.5非整數(shù);

 。3)內(nèi)錯角相等,兩直線平行;

 。4)菱形的對角線互相垂直且平分;

 。5)平行線不相交;

  (6)若ab=0 ,則a=0 .

 。ㄗ寣W(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)

高一數(shù)學(xué)教案13

  目標(biāo):

  1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;

  2.讓學(xué)生了解函數(shù)的零點與方程根的聯(lián)系 ;

  3.讓學(xué)生認(rèn)識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點中的作用 ;

  4。培養(yǎng)學(xué)生動手操作的能力 。

  二、教學(xué)重點、難點

  重點:零點的概念及存在性的`判定;

  難點:零點的確定。

  三、復(fù)習(xí)引入

  例1:判斷方程 x2-x-6=0 解的存在。

  分析:考察函數(shù)f(x)= x2-x-6, 其

  圖像為拋物線容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

  點B (0,-6)與點C(4,6)之間的那部分曲線

  必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點

  X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

  少有點X2,使得f( X2)=0,而方程至多有兩

  個解,所以在(-4,0),(0,4)內(nèi)各有一解

  定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的零點

  抽象概括

  y=f(x)的圖像與x軸的交點的橫坐標(biāo)叫做該函數(shù)的零點,即f(x)=0的解。

  若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個零點,即f(x)=0在 (a,b)內(nèi)至少有一個實數(shù)解。

  f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點

  所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點

  注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的實數(shù)解的存在性,并不能判斷具體有多少個解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實數(shù)解;

  3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

  4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。

  四、知識應(yīng)用

  例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實數(shù)解?為什么?

  解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點,即f(x)=0在區(qū)間[-1,0]內(nèi)有實數(shù)解

  練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點?

  例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。

  解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個交點,在( -,2)內(nèi)也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。

  練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內(nèi),求m的取值范圍。

  五、課后作業(yè)

  p133第2,3題

高一數(shù)學(xué)教案14

  一、教材

  《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

  二、學(xué)情

  學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點的坐標(biāo)、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標(biāo)法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

  三、教學(xué)目標(biāo)

  (一)知識與技能目標(biāo)

  能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。

  (二)過程與方法目標(biāo)

  經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

  (三)情感態(tài)度價值觀目標(biāo)

  激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。

  四、教學(xué)重難點

  (一)重點

  用解析法研究直線與圓的位置關(guān)系。

  (二)難點

  體會用解析法解決問題的數(shù)學(xué)思想。

  五、教學(xué)方法

  根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。

  六、教學(xué)過程

  (一)導(dǎo)入新課

  教師借助多媒體創(chuàng)設(shè)泰坦尼克號的`情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

  教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。

  設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  (二)新課教學(xué)——探究新知

  教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認(rèn)識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。

  判斷方法:

  (1)定義法:看直線與圓公共點個數(shù)

  即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

  (2)比較法:圓心到直線的距離d與圓的半徑r做比較,

  (三)合作探究——深化新知

  教師進(jìn)一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

  已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

  讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

  當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。

  (四)歸納總結(jié)——鞏固新知

  為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

  可由方程組的解的不同情況來判斷:

  當(dāng)方程組有兩組實數(shù)解時,直線l與圓C相交;

  當(dāng)方程組有一組實數(shù)解時,直線l與圓C相切;

  當(dāng)方程組沒有實數(shù)解時,直線l與圓C相離。

  活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。

  (五)小結(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會以口頭提問的方式:

  (1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  (2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?

  設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進(jìn)行主動建構(gòu)。

  作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報。

  七、板書設(shè)計

  我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。

高一數(shù)學(xué)教案15

  第二十四教時

  教材:倍角公式,推導(dǎo)和差化積及積化和差公式

  目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對公式靈活運用的訓(xùn)練;同時,讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對此有所了解。

  過程:

  一、 復(fù)習(xí)倍角公式、半角公式和萬能公式的'推導(dǎo)過程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教學(xué)與測試》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化簡得:

  ∵ 即

  二、 積化和差公式的推導(dǎo)

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點在于將積式化為和差,有利于簡化計算。(在告知公式前提下)

  例三、 求證:sin3sin3 + cos3cos3 = cos32

  證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右邊

  原式得證

  三、 和差化積公式的推導(dǎo)

  若令 + = , = ,則 , 代入得:

  這套公式稱為和差化積公式,其特點是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小結(jié):和差化積,積化和差

  五、 作業(yè):《課課練》P3637 例題推薦 13

  P3839 例題推薦 13

  P40 例題推薦 13

【高一數(shù)學(xué)教案】相關(guān)文章:

高一優(yōu)秀數(shù)學(xué)教案09-28

高一數(shù)學(xué)教案11-05

高一數(shù)學(xué)教案數(shù)列12-29

【薦】高一數(shù)學(xué)教案11-27

【熱】高一數(shù)學(xué)教案12-05

【熱門】高一數(shù)學(xué)教案11-26

高一數(shù)學(xué)教案【薦】12-02

高一數(shù)學(xué)教案【熱門】11-28

高一數(shù)學(xué)教案【熱】12-03

高一數(shù)學(xué)教案【推薦】11-30