有關(guān)八年級數(shù)學(xué)教案集合七篇
作為一位優(yōu)秀的人民教師,往往需要進(jìn)行教案編寫工作,借助教案可以讓教學(xué)工作更科學(xué)化。怎樣寫教案才更能起到其作用呢?下面是小編收集整理的八年級數(shù)學(xué)教案7篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級數(shù)學(xué)教案 篇1
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.
(二)能力訓(xùn)練點
1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力.
(三)德育滲透點
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
(四)美育滲透點
通過學(xué)習(xí),體會幾何證明的`方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強(qiáng)調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).
八年級數(shù)學(xué)教案 篇2
教學(xué)指導(dǎo)思想與理論依據(jù)
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具! 教師運用現(xiàn)代多媒體信息技術(shù)對教學(xué)活動進(jìn)行創(chuàng)造性設(shè)計,發(fā)揮計算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
教學(xué)內(nèi)容分析:
本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點,為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
學(xué)生情況分析:
本班經(jīng)歷了一年多課改實踐,學(xué)生對運用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運用《幾何畫板》這一工具進(jìn)行簡單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識于實踐的過程。
教學(xué)方式與教學(xué)手段說明:
本節(jié)課充分利用現(xiàn)有的'先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實驗室,以研究電動門的機(jī)械原理為切入點,從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機(jī)對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動地探究新知識的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
知識與技能:
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
過程與方法:
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識的一些方法;
情感與價值觀:
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學(xué)生在觀察、歸納、類比及實驗教學(xué)活動中,體會成功后的喜悅;
3、初步具有感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
教學(xué)環(huán)境:
多媒體計算機(jī)網(wǎng)絡(luò)教室
教學(xué)課型:
試驗探究式
教學(xué)重點:
特殊四邊形性質(zhì)
教學(xué)難點:
特殊四邊形性質(zhì)的發(fā)現(xiàn)
一、設(shè)置情景,提出問題
提出問題:
知識已生活,又服務(wù)于生活。我們經(jīng)過校門時,是否注意到電動門的機(jī)械工作原理(教師用幾何畫板演示)?
1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?
2、在開(關(guān))門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當(dāng)我們學(xué)習(xí)完本節(jié)知識后,其他問題就容易解決了。
。ㄒ鈭D:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)
二、整體了解,形成系統(tǒng)
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設(shè)有是什么圖形呢?如果沒有,為什么?
解決問題:
學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導(dǎo)。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形
2、從邊、角、對角線、面積、周長、……等方面研究。本節(jié)課主要從邊、角、對角線三方面考慮;
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
(意圖: 學(xué)生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)
三、個體研究、總結(jié)性質(zhì)
1、平行四邊形性質(zhì)
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
解決問題:
教師引導(dǎo)學(xué)生拖動B點(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
在圖形變化過程中,
。1)對邊相等;
。2)對角相等;
(3)通過AO=CO 、BO=DO,可得對角線互相平分;
。4)通過鄰角互補(bǔ),可得對邊平行;
(5)內(nèi)外角和都等于360度;
。6)鄰角互補(bǔ);
……
指導(dǎo)學(xué)生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)
菱形性質(zhì)
梯形性質(zhì)等腰梯形性質(zhì)
直角梯形性質(zhì)
。葘儆谄叫兴倪呅涡再|(zhì)又屬于矩形性質(zhì)可以畫箭頭)
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
。ㄒ鈭D: 學(xué)生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學(xué)生體驗到科學(xué)探索的樂趣。)
教師總結(jié):
。ㄒ鈭D: 掌握畫箭頭的方法,使學(xué)生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達(dá),又節(jié)省時間。)
四、聯(lián)系生活,解決問題
解決問題:
學(xué)生操作電腦,觀察圖形、分組討論,教師個別指導(dǎo)。
學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個特點……
(意圖:使學(xué)生體會到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)
五、小結(jié)
1.研究問題從整體到局部的方法;
2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)
1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。
學(xué)習(xí)效果評價
針對教學(xué)內(nèi)容、學(xué)生特點及設(shè)計方案,預(yù)計下列學(xué)習(xí)效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學(xué)生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識規(guī)律及探究新知識的一般方法,初步形成感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
學(xué)生演示開(關(guān))門過程中,了解特殊四邊形在日常生活中的應(yīng)用,并用所學(xué)的知識解釋實際問題,使自身價值得以實現(xiàn)并體會成功后的喜悅;
由于個體差異,針對教學(xué)目標(biāo)難以達(dá)到的個別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對話交流及時指導(dǎo),使教學(xué)目標(biāo)得以實現(xiàn)。
八年級數(shù)學(xué)教案 篇3
教材分析
因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的.思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
學(xué)情分析
通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
教學(xué)目標(biāo)
1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。
3、能運用提公因式法、公式法進(jìn)行綜合運用。
4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
教學(xué)重點和難點
重點: 靈活運用平方差公式進(jìn)行分解因式。
難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
八年級數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo):
1、知識目標(biāo):能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):
①,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系;
、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強(qiáng)對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續(xù)變化的特點;
難點:圖形的劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計:
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調(diào)動學(xué)生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補(bǔ)充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的`主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。
八年級數(shù)學(xué)教案 篇5
一、學(xué)習(xí)目標(biāo):
1、會推導(dǎo)兩數(shù)差的平方公式,會用式子表示及用文字語言敘述;
2、會運用兩數(shù)差的平方公式進(jìn)行計算。
二、學(xué)習(xí)過程:
請同學(xué)們快速閱讀課本第27—28頁的內(nèi)容,并完成下面的練習(xí)題:
。ㄒ唬┨剿
1、計算: (a - b) =
方法一: 方法二:
方法三:
2、兩數(shù)差的平方用式子表示為_________________________;
用文字語言敘述為___________________________ 。
3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?
。ǘ┈F(xiàn)學(xué)現(xiàn)用
利用兩數(shù)差的平方公式計算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
。ㄈ┖献鞴リP(guān)
靈活運用兩數(shù)差的平方公式計算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)達(dá)標(biāo)訓(xùn)練
1、、選擇:下列各式中,與(a - 2b) 一定相等的`是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、計算:
。 a - b) ( x -2y )
3、有一邊長為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?
(四)提升
1、本節(jié)課你學(xué)到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
八年級數(shù)學(xué)教案 篇6
一、教學(xué)目標(biāo)
1.理解一個數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過學(xué)習(xí)乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點和難點
教學(xué)重點:平方根和算術(shù)平方根的概念及求法。
教學(xué)難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過程
(一)提問
1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?
這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時,最容易出現(xiàn)的錯誤是丟掉負(fù)數(shù)解,在教學(xué)時應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的'平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因為正數(shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
(三)平方根性質(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負(fù)數(shù)沒有平方根。
(四)開平方
求一個數(shù)a的平方根的運算,叫做開平方的運算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負(fù)數(shù)進(jìn)行運算,而且正數(shù)的運算結(jié)果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號a”。
練習(xí):1.用正確的符號表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
③0。2的平方根是
、3的平方根是
⑤ 的平方根是
由學(xué)生說出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書設(shè)計
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級數(shù)學(xué)教案 篇7
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?
通過討論得到矩形的判定方法.
矩形判定方法1:對角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個角是直角的四邊形是矩形.
(指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)
二、例習(xí)題分析
例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么?
(1)有一個角是直角的四邊形是矩形;(×)
(2)有四個角是直角的四邊形是矩形;(√)
。3)四個角都相等的四邊形是矩形;(√)
(4)對角線相等的四邊形是矩形;(×)
。5)對角線相等且互相垂直的四邊形是矩形;(×)
(6)對角線互相平分且相等的四邊形是矩形;(√)
。7)對角線相等,且有一個角是直角的四邊形是矩形;(×)
。8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)
(9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)
指出:
(l)所給四邊形添加的條件不滿足三個的'肯定不是矩形;
。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.
例2(補(bǔ)充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補(bǔ)充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
人教版八年級數(shù)學(xué)教案11-04
初中八年級數(shù)學(xué)教案11-03
八年級上冊數(shù)學(xué)教案11-09
【精】八年級數(shù)學(xué)教案12-04
八年級數(shù)學(xué)教案【精】12-04
【薦】八年級數(shù)學(xué)教案12-03