丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-08-23 16:29:42 八年級數(shù)學教案 我要投稿

有關八年級數(shù)學教案集錦9篇

  作為一名默默奉獻的教育工作者,就難以避免地要準備教案,教案有助于學生理解并掌握系統(tǒng)的知識。我們應該怎么寫教案呢?以下是小編幫大家整理的八年級數(shù)學教案9篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

有關八年級數(shù)學教案集錦9篇

八年級數(shù)學教案 篇1

  課題:一元二次方程實數(shù)根錯例剖析課

  【教學目的】 精選學生在解一元二次方程有關問題時出現(xiàn)的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養(yǎng)學生思維的批判性和深刻性。

  【課前練習】

  1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數(shù)根,當△_______時,方程有兩個不相等的實數(shù)根,當△________時,方程沒有實數(shù)根。

  【典型例題】

  例1 下列方程中兩實數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解: C

  錯因剖析:由根與系數(shù)的關系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

  例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。

  正解: -1≤k<2且k≠

  例4 (20xx山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當x12+x22=15時,求m的值。

  錯解:由根與系數(shù)的關系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

  正解:m = 2

  例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的`取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負數(shù),求方程的整數(shù)根。

  錯解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負整數(shù)應包括零和正整數(shù)。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習】

  練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

 。1)求k的取值范圍;

 。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當k< 時,方程有兩個不相等的實數(shù)根。

 。2)存在。

  如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

  ∴當k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

 。1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

 。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

  練習2(02廣州市)當a取什么值時,關于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

  解:(1)當a=0時,方程為4x-1=0,∴x=

 。2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當a≥ -4且a≠0時,方程有實數(shù)根。

  又因為方程只有正實數(shù)根,設為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數(shù)根。

  【小結】

  以上數(shù)例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數(shù)根的存在與“△”之間的關系。

  1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

  2、運用根與系數(shù)關系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

  求證:關于x的方程

 。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

  考題匯編

  1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關系,求(x1-x2)2的值。

  2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0

 。1)若方程的一個根為1,求m的值。

 。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

  3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級數(shù)學教案 篇2

  教學目標:

  1。經歷探索平行四邊形有關概念和性質的過程,在活動中發(fā)展學生的探究意識和合作交流的習慣;

  2。索并掌握平行四邊形的性質,并能簡單應用;

  3。在探索活動過程中發(fā)展學生的探究意識。

  教學重點:平行四邊形性質的探索。

  教學難點:平行四邊形性質的理解。

  教學準備:多媒體課件

  教學過程

  第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學生進一步探索了平行四邊形的概念,明確了平行四邊形的本質特征。)

  1。小組活動一

  內容:

  問題1:同學們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

 。1)你拼出了怎樣的四邊形?與同桌交流一下;

 。2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

  2。小組活動二

  內容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

  第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學生動手、動嘴,全班交流)

  小組活動3:

  用 一張半透明的紙復制你剛才畫的平行四邊形,并將復制 后的四邊形繞一個頂點旋轉180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結論?四邊形的對邊、對角分別有什么關系?能用別的方法驗證你的結論嗎?

 。1)讓學生動手操作、復制、旋轉 、觀察、分析;

  (2)學生交流、議論;

 。3)教師利用多媒體展示實踐的過程。

  第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎上提升,并了解圖形具有的`數(shù)學本質。)

  實踐 探索內容

 。1)通過剪紙,拼紙片,及旋轉,可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

  (2)可以通過推理來證明這個結論,如圖連結AC。

  ∵ 四邊形ABCD是平行四邊形

  AD // BC, AB // CD

  2,4

  △AB C和△CDA中

  1

  AC=C A

  4

  △ABC≌△CDA(ASA)

  AB=DC, AD=CB,B

  又∵2

  4

  3=4

  即BAD=DCB

  第四環(huán)節(jié) 應用鞏固 深化提高(10分鐘,通過議一議,練一練,學生進一步理解平行四邊形的性質,并進行簡單合情推理,體現(xiàn)性質的應用,同時從不同角度平移、旋轉等再一次認識平行四邊形的本質特征。)

  1;顒觾热荩

  (1)議一議:如果已知平行四邊形的一個內角度數(shù),能確定其它三個內角的度數(shù)嗎?

  A(學生思考、議論)

  B總結歸納:可以確定其它三個內角的度數(shù)。

  由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內角的度數(shù),可以確定其它三個角度數(shù)。

 。2)練一練(P99隨堂練習)

  練1 如圖:四邊形ABCD是平行四邊形。

 。1)求ADC、BCD度數(shù)

 。2)邊AB、BC的度數(shù)、長度。

  練2 四邊形ABCD是平行四邊形

  (1)它的四條邊中哪些 線段可以通過平移相到得到?

 。2)設對角線AC、BD交于O;AO與OC、BO與OD有何關系?說說理由。

  歸 納:平行四邊形的性質:平行四邊形的對角線互相平分。

  第五環(huán)節(jié) 評價反思 概括總結(8分鐘,學生踴躍談感受和收獲)

  活動內容

  師生相互交流、反思、總結。

 。1)經歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

 。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

 。3)本節(jié)學習到了什么?(知識上、方法上)

  考一考:

  1。 ABCD中,B=60,則A= ,C= ,D= 。

  2。 ABCD中,A比B大20,則C= 。

  3。 ABCD中,AB=3,BC=5,則AD= CD= 。

  4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

  布置作業(yè)

  課本習題4。1

  A組(學優(yōu)生)1 、2

  B組(中等生)1、2

  C組(后三分之一生)1、2

  教學反思

八年級數(shù)學教案 篇3

  教學目標:

  知識與技能目標:

  1.掌握矩形的概念、性質和判別條件.

  2.提高對矩形的性質和判別在實際生活中的應用能力.

  過程與方法目標:

  1.經歷探索矩形的有關性質和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法.

  2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉化歸思想.

  情感與態(tài)度目標:

  1.在操作活動過程中,加深對矩形的的認識,并以此激發(fā)學生的探索精神.2.通過對矩形的探索學習,體會它的內在美和應用美.

  教學重點:矩形的性質和常用判別方法的理解和掌握.

  教學難點:矩形的性質和常用判別方法的綜合應用.

  教學方法:分析啟發(fā)法

  教具準:像框,平行四邊形框架教具,多媒體課件.

  教學過程設計:

  一.情境導入:

  演示平行四邊形活動框架,引入課題.

  二.講授新課:

  1.歸納矩形的定義:

  問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學生思考、回答.)

  結論:有一個內角是直角的平行四邊形是矩形.

  八年級數(shù)學上冊教案2.探究矩形的性質:

  (1).問題:像框除了“有一個內角是直角”外,還具有哪些一般平行四邊形不具備的性質?(學生思考、回答.)

  結論:矩形的四個角都是直角.

 。2).探索矩形對角線的性質:

  讓學生進行如下操作后,思考以下問題:(幻燈片展示)

  在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.

 、.隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

 、.當∠α是銳角時,兩條對角線的長度有什么關系?當∠α是鈍角時呢?

  ③.當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關系?

  (學生操作,思考、交流、歸納.)

  結論:矩形的兩條對角線相等.

 。3).議一議:(展示問題,引導學生討論解決.)

  ①.矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.

 、.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關性質解釋這結論嗎?

  (4).歸納矩形的性質:(引導學生歸納,并體會矩形的“對稱美”.)

  矩形的'對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.

  例解:(性質的運用,滲透矩形對角線的“化歸”功能.)

  如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4

  厘米.求BD與AD的長.

 。ㄒ龑W生分析、解答.)

  探索矩形的判別條件:(由修理桌子引出)

 。1).想一想:(學生討論、交流、共同學習)

  對角線相等的平行四邊形是怎樣的四邊形?為什么?

  結論:對角線相等的平行四邊形是矩形.

 。ɡ碛煽捎蓭熒餐治,然后用幻燈片展示完整過程.)

  (2).歸納矩形的判別方法:(引導學生歸納)

  有一個內角是直角的平行四邊形是矩形.

  對角線相等的平行四邊形是矩形.

  三.課堂練習:(出示P98隨堂練習題,學生思考、解答.)

  四.新課小結:

  通過本節(jié)課的學習,你有什么收獲?

 。◣熒餐瑥闹R與思想方法兩方面小結.)

  五.作業(yè)設計:P99習題4.6第1、2、3題.

  板書設計:

  4.矩形

  矩形的定義:

  矩形的性質:

  前面知識的小系統(tǒng)圖示:

  三.矩形的判別條件:

  例1

  課后反思:在平行四邊形及菱形的教學后。學生已經學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質。一些相關矩形的計算也學會應用轉化為直角三角形的方法來解決?偟目磥磉@節(jié)課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。

八年級數(shù)學教案 篇4

  教學目標

  一、教學知識點:

  1.旋轉的定義.2.旋轉的基本性質.

  二、能力訓練要求:

  1.通過具體實例認識旋轉,理解旋轉的基本涵義.

  2.探索旋轉的基本性質,理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質.

  三、情感與價值觀要求

  1.經歷對生活中與旋轉現(xiàn)象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.

  2.通過學習使學生能用數(shù)學的眼光看待生活中的有關問題,進一步發(fā)展學生的數(shù)學觀.

  教學重點:旋轉的基本性質.

  教學難點:探索旋轉的基本性質.

  教學方法:

  1、遵循學生是學習的主人的原則,在為學生創(chuàng)造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。

  2、采用多媒體課件輔助教學。

  教學過程:

  一.巧設情景問題,引入課題

  日常生活中,我們經常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉動呢?

  1.在這些轉動的現(xiàn)象中,它們都是繞著一個點轉動的.

  2.每個物體的'轉動都是向同一個方向轉動.

  3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

  4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節(jié)課我們就來探討生活中的旋轉.

  二.講授新課

  在數(shù)學中,如何定義旋轉呢?在平面內,將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.

  議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.

  (2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的位置,點B旋轉到點E的位置.

  (3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.

  (4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.

  (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

  看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質呢?

  答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.

  因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.

  由此我們得到了旋轉的基本性質:經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.

 。劾1](課本68頁例1)

 。蹘熒参觯萁浹菔(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針所轉過的度數(shù)是6°,這樣20分時,分針逆轉的角度即可求出.

  解:(見課本68頁)

  書上68頁做一做

  三.課堂練習

  課本P69隨堂練習.

  1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.

  四.課時小結

  五.課后作業(yè):課本P69習題3.4 1、2、3.

  六.活動與探究

  1.分析圖中的旋轉現(xiàn)象.過程:讓學生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉規(guī)律.

  結果:旋轉現(xiàn)象為:

  整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

  整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉90°、180°、270°前后的圖形共同組成的.

  整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.

  2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?

  過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.

  結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.

  整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉90°、180°、 270°.前后的圖形共同組成的.

  整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.

  板書設計:

  教學反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養(yǎng)學生的空間想象能力。

八年級數(shù)學教案 篇5

  一、創(chuàng)設情境

  在學習與生活中,經常要研究一些數(shù)量關系,先看下面的問題.

  問題1如圖是某地一天內的氣溫變化圖.

  看圖回答:

  (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

  解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關系呢?

  二、探究歸納

  問題2銀行對各種不同的存款方式都規(guī)定了相應的'利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.

  解隨著存期x的增長,相應的年利率y也隨著增長.

  問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數(shù)值:

  觀察上表回答:

  (1)波長l和頻率f數(shù)值之間有什么關系?

  (2)波長l越大,頻率f就________.

  解(1)l與f的乘積是一個定值,即

  lf=300000,

  或者說.

  (2)波長l越大,頻率f就 越小 .

  問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.

  利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問題中,我們研究了一些數(shù)量關系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級數(shù)學教案 篇6

  一、創(chuàng)設情境

  1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?

 。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點即可畫出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經過哪一點的直線?

 。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經過原點(0,0)的一條直線).

  3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?

  4.在平面直角坐標系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點在坐標系的什么地方?

  二、探究歸納

  1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.

  2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.

  分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.

  解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.

  過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

  所以一次函數(shù)y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的'交點坐標是(0,b),與x軸的交點坐標是.

  三、實踐應用

  例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.

  分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.

  解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.

  分析求直線與x軸、y軸的交點坐標,根據(jù)x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應的橫坐標和縱坐標?

八年級數(shù)學教案 篇7

  學習目標

  1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關系并能找出變化規(guī)律。

  2、由坐標的變化探索新舊圖形之間的變化。

  重點

  1、 作某一圖形關于對稱軸的對稱圖形,并能寫出所得圖形相應各點的坐標。

  2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。

  難點

  體會極坐標和直角坐標思想,并能解決一些簡單的問題

  學習過程(導入、探究新知、即時練習、小結、達標檢測、作業(yè))

  第一課時

  學習過程:

  一、舊知回顧:

  1、平面直角坐標系定義:在平面內,兩條____________且有公共_________的數(shù)軸組成平面直角坐標系。

  2、坐標平面內點的坐標的表示方法____________。

  3、各象限點的坐標的特征:

  二、新知檢索:

  1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形

  三、典例分析

  例1、

  (1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?

  (2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?

  例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  (2)將魚的頂點的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  四、題組訓練

  1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的.點用線段依次連接起來形成一個圖案。

  (1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

  (2)縱、橫分別加3呢?

  (3)縱、橫分別變成原來的2倍呢?

  歸納:圖形坐標變化規(guī)律

  1、 平移規(guī)律:2、圖形伸長與壓縮:

  第二課時

  一、舊知回顧:

  1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。

  中心對稱圖形定義:在同一平面內,如果把一個圖形繞某一點旋轉 ,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形

  二、新知檢索:

  1、如圖,左邊的魚與右邊的魚關于y軸對稱。

  1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

  2、各個對應頂點的坐標有怎樣的關系?

  3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關于y軸對稱,那么左邊的魚各個頂點的坐標將發(fā)生怎樣的變化?

  三、典例分析,如圖所示,

  1、右圖的魚是通過什么樣的變換得到 左圖的魚的。

  2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關系。

  3、如果將右邊的魚的縱、橫坐標都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關系

  四、題組練習

  1、將坐標作如下變化時,圖形將怎樣變化?

  ① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

 、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。

  3、 如圖,作字母M關于y軸的軸對稱圖形,并寫出所得圖形相應各端點的坐標。

  4、 描出下圖中楓葉圖案關于x軸的軸對稱圖形的簡圖。

  學習筆記

八年級數(shù)學教案 篇8

  教材分析

  本章屬于“數(shù)與代數(shù)”領域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學學習中具有重要的意義。本章內容建立在已經學習了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節(jié)課的知識是學習本章的基礎,為后續(xù)章節(jié)的學習作鋪墊,因此,學得好壞直接關乎到后續(xù)章節(jié)的學習效果。

  學情分析

  本節(jié)課知識是學習整章的基礎,因此,教學的好壞直接影響了后續(xù)章節(jié)的學習。學生在學習本章前,已經掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關概念,并且本節(jié)課的.知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數(shù)冪的乘法的運算性質的過程是一個由特殊到一般的認識過程,并且注意導出這一性質的每一步的根據(jù)。

  從學生做練習和作業(yè)來看,大部分學生都已經掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

  教學目標

  1、知識與技能:

  掌握同底數(shù)冪乘法的運算性質,能熟練運用性質進行同底數(shù)冪乘法運算。

  2、過程與方法:

 。1)通過同底數(shù)冪乘法性質的推導過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;

 。2)通過性質運用幫助學生理解字母表達式所代表的數(shù)量關系,進一步積累選擇適當?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經驗。

  3、情感態(tài)度與價值觀:

 。1)通過引例問題情境的創(chuàng)設,誘發(fā)學生的求知欲,進一步認識數(shù)學與生活的密切聯(lián)系;

 。2)通過性質的推導體會“特殊。

八年級數(shù)學教案 篇9

  總課時:7課時 使用人:

  備課時間:第八周 上課時間:第十周

  第4課時:5、2平面直角坐標系(2)

  教學目標

  知識與技能

  1.在給定的直角坐標系下,會根據(jù)坐標描出點的位置;

  2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

  過程與方法

  1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數(shù)形結合思想,培養(yǎng)學生的合作 交流能力;

  2.通過由點確定坐標到根據(jù)坐標描點的轉化過程,進一步培養(yǎng)學生的轉化意識。

  情感態(tài)度與價值觀

  通過生動有趣的教學活動,發(fā)展學生的合情推理能力和豐富的情感、態(tài)度,提高學生學習數(shù)學的興趣。

  教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學過程

  第一環(huán)節(jié) 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

  在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

  練習:指出下列 各點以及所在象限或坐標軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學生作答)

  由點找坐標是已知點在直角坐標 系中的位置,根據(jù)這點在方格紙上對應的x軸、y軸上的數(shù)字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學生操作完畢后)

  2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?

  (出示學生的.作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標系畫,要求每位同學獨立完成。

  (學生描點、畫圖)

  (拿出一位做對的學生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)

  (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動的菱形)

  2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

  先獨立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結,全班交流)

  本節(jié)課在復習上節(jié)課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

  在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

  第五環(huán)節(jié) 布置作業(yè)

  習題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

八年級數(shù)學教案【熱門】12-03

【精】八年級數(shù)學教案12-04

八年級數(shù)學教案【精】12-04

八年級數(shù)學教案【薦】12-06

【推薦】八年級數(shù)學教案12-05

八年級數(shù)學教案【推薦】12-04

【熱】八年級數(shù)學教案12-07

八年級下冊數(shù)學教案01-01