- 相關(guān)推薦
正方形 探索式教學(xué)示例
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學(xué)生活動:各自測量。]
鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。
講授新課
找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動:尋找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動;尋找菱形性質(zhì)。]
動畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時提出問題,引導(dǎo)學(xué)生進行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
[學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形!
“有一個角是直角的菱形叫做正方形!
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學(xué)生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
動畫演示:
場景五:平行四邊形、矩形、菱形、正方形之間的關(guān)系
場景六:平行四邊形、矩形、菱形、正方形之間的性質(zhì)關(guān)系
師:當(dāng)然平行四邊形、矩形、菱形和正方形它們之間的關(guān)系還可以用下圖(圖1)表示:
圖1
師:請同學(xué)們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系以及平行四邊形、矩形、菱形和正方形它們之間的性質(zhì)關(guān)系整理在筆記本上。
例題講解
例1 在已知銳角三角形ABC外邊作正方形ABDE和正方形ACFG,求證:BG=CE
分析:據(jù)已知條件畫出圖形,如圖2所示,要證明線段相等,與圖形可以證明二個三角形全等,即只需證明△ABG≌△AEC.
證明:∵四邊形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE+∠BAC=∠CAG+∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC ∴BG=CE
圖2
說明:應(yīng)用正方形的性質(zhì),可以為證明全等提供條件,要注意等式性質(zhì)的應(yīng)用,這與向銳角三角形ABC外作等邊三角形的結(jié)論完全相同,證法是可以借鑒的。
鞏固練習(xí)
鞏固練習(xí)題目可有教師根據(jù)學(xué)生情況自主選擇。
講解新課
師:正方形是特殊的平行四邊形、矩形、菱形,那么根據(jù)平行四邊形、矩形、菱形和正方形它們之間的關(guān)系,怎么判定一個矩形是正方形?
生:證一組鄰邊相等。
師:怎么判定一個菱形是正方形?
生:證有一個角是直角。
師:怎么判定一個平行四邊形是正方形?
生:根據(jù)定義,證有一組鄰邊相等且有一個角是直角。
師:那么,剛才的結(jié)論如果用圖來表示,是不是如圖2所示?
師:圖3表現(xiàn)出由平行四邊形、矩形、菱形分別得到正方形的三種方法。這是我們根據(jù)平行四邊形、矩形、菱形和正方形它們之間的關(guān)系得到的,但似乎有缺憾,能不能同樣根據(jù)平行四邊形、矩形、菱形和正方形它們之間的關(guān)系把圖3補全?
[學(xué)生活動:積極思考,部分學(xué)生疑惑不解。]
師點取上等學(xué)生回答問題,根據(jù)回答得圖4。
生恍然大悟。
學(xué)生思路得到啟發(fā),中上等及上等學(xué)生意猶未盡,鼓勵他們根據(jù)矩形、菱形的判定方法直接得到正方形的判定思路,并要求其舉出簡單示例。
就勢跟進,要求學(xué)生思考,給定四邊形,有什么樣的邊、角、對角線條件可判定四邊形是正方形?要求給出簡單圖例,并說出相應(yīng)證明思路。
為進一步理解正方形的判定方法,可研究以下幾個問題:
(1)對角線相等的菱形是正方形嗎?
(2)對角線互相垂直的矩形是正方形嗎?
(3)對角線互相垂直且相等的四邊形是正方形嗎?若不是,還需增加什么條件?
(4)能說“四條便都相等的四邊形是正方形嗎?”
(5)四個角都相等的四邊形是正方形嗎?
小結(jié):證明正方形的思路,總體講三種思路,如圖4所示;遇到具體條件要學(xué)會具體分析,規(guī)定條件和隱含條件不外乎邊、角、對角線,或者把他們攪和在一起。這是一定要都要冷靜,學(xué)會去分析。
動畫演示:
場景七:正方形的判定
例題講解
例2 如圖所示,在正方形ABCD中,E、F分別是BC、AB的中點,DE、CF相交于M,
求證:AD=AM。
分析:欲證AD=AM,只需證明∠1=∠2,但要根據(jù)題目條件直接證明∠1=∠2比較困難,考慮到E、F是正方形的兩邊中點,容易證明得:△BCF≌△CDF,得∠3=∠4,而∠4+∠BCF=90°.由此DE⊥CF,這是要證AD=AM,是否想到與直角有關(guān)的等腰三角形?只需延長CF、DA交于N,即可出現(xiàn)直角三角形MND,只要證明A是ND中點即可。這是是否發(fā)現(xiàn)△BCF≌△ANF?由AN=BC=AD,從而A是ND中點,MA是直角三角形MND的斜邊ND上的中線。問題得證。
證明:略。
說明:將此題中的中點E、F進行變化:E、F分別為正方形ABCD的邊BC、AB上的點,且BE=AF,則有DE⊥CF。這個變化后的圖形在正方形中常常出現(xiàn),要注意隱含的這個垂直條件。
課堂練習(xí)題及課后作業(yè)可由教師根據(jù)學(xué)生情況自主選擇。
【正方形 探索式教學(xué)示例】相關(guān)文章:
對高中數(shù)學(xué)開放式教學(xué)的探索08-19
淺談物理新教材教學(xué)中探究式教學(xué)的探索與實踐08-18
正方形教學(xué)設(shè)計08-24
《正方形》教學(xué)反思04-11
探索規(guī)律教學(xué)反思08-25
探索宇宙教學(xué)反思08-25
《探索圖形》教學(xué)反思04-02
探索宇宙教學(xué)反思04-04
探索規(guī)律教學(xué)反思03-18