丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學反思>因數(shù)和倍數(shù)教學反思

因數(shù)和倍數(shù)教學反思

時間:2023-10-11 12:27:12 賽賽 教學反思 我要投稿

因數(shù)和倍數(shù)教學反思(15篇)(精選25篇)

  身為一位優(yōu)秀的教師,我們要在課堂教學中快速成長,寫教學反思可以很好的把我們的教學記錄下來,那么教學反思應該怎么寫才合適呢?以下是小編精心整理的因數(shù)和倍數(shù)教學反思,歡迎大家分享。

因數(shù)和倍數(shù)教學反思(15篇)(精選25篇)

  因數(shù)和倍數(shù)教學反思 1

  一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清。

  “倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實都是表示同一類數(shù)。(即因數(shù)也是約數(shù))

  二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時候不提整除。

  也許我的頭腦還受舊版教材的影響,我認為說到“倍數(shù)與因數(shù)”必須要談到整除,因為整除是研究“因數(shù)和倍數(shù)”的條件,學生在沒有這條件學習整除,只要教師的教學方法稍有不慎,學生會很快誤入小數(shù)也有因數(shù);但是我在實際的教學過程中,也體會到了教材中不提整除的好處。而我的心里卻又產生了一個新的疑問,S版教材到底在什么時候于什么數(shù)學環(huán)境下才提出“整除”這個概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。

  三、教學2、5和3的倍數(shù)教師應注重“靈活”。

  1、 在教學2和5的倍數(shù)時,是用同一種方法找出它們倍數(shù)的,學生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準確找出各自的倍數(shù),此時,教師應把學生的思維轉到同時是2和5的倍數(shù)怎樣找?接著引導學生歸納出同時是2和5的倍數(shù)的特征,因此,讓學生的知識面進一步加大。

  2、教學3的倍數(shù)的特征時,教師首先讓學生用2和5的倍數(shù)的方法去找3的倍數(shù)的.特征,讓學生嘗試這種方法是找不到3的倍數(shù)的特征,這時,教師應該引導學生對寫出的3的倍數(shù),要用另一種方法去歸納、總結3的倍數(shù)的特征,運用這一特點,教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學生進行判斷,這樣可使學生對3的倍數(shù)的特征進一步得到鞏固;當學生熟練掌握3的倍數(shù)的特征時,教師話峰一轉,你們能歸納出9的倍數(shù)的特征嗎?學生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學生運用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學生會輕而易舉地歸納、總結出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學生學習3的倍數(shù)的特征,還使學生的知識面擴大,達到知識的鞏固和遷移的目的。

  3、當學生掌握了2、5和3的倍數(shù)的特征時,教師這時應引導學生進一步歸納、總結,把這三個特征綜合,從而得出同時是2、3和5的倍數(shù)的特征。

  通過這樣的教學,讓學生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。

  因數(shù)和倍數(shù)教學反思 2

  本單元涉及到的因數(shù)、倍數(shù)、質數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內容。是學生通過四年多數(shù)學學習,已經掌握了大量的整數(shù)知識,包括整數(shù)的認識、整數(shù)四則運算的基礎上進一步探索整數(shù)的性質。

  在教學中,通過教授學生認識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。

  接下來學習“2、3、5的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的規(guī)律和特點。在此之前還要向學生教學什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學習“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導學生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。

  那么,又如何讓學生學習掌握質數(shù)與合數(shù)呢?在教學中,我主要是讓學生把1~

  20的因數(shù)分別寫出來,并按照奇數(shù)為一列偶數(shù)為一列來讓學生進行觀察比較,然后歸類整理:只有1個因數(shù)的有哪些數(shù)?有兩個因數(shù)的有哪些數(shù)?有3個以上因數(shù)的有哪些數(shù)?學生分好之后,教師明確:向這樣只有2個因數(shù)的數(shù)叫做質數(shù),有2個以上因數(shù)個數(shù)的數(shù)叫合數(shù),1既不是質數(shù)也不是合數(shù)。那么自然數(shù)按因數(shù)的個數(shù)來分就可以分為“1、質數(shù)、合數(shù)”三大類。

  為了讓學生鞏固質數(shù)與合數(shù),再讓學生找出1~100以內的所有質數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的`倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質數(shù),并且讓學生數(shù)出、記住100以內有25個質數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質數(shù)還是合數(shù)。

  最后,再學生講解介紹“分解質因數(shù)”,知道用短除法來分解質因數(shù)。然后對整個單元所學的知識進行梳理、歸類,讓學生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習,加強的后進生的關注和輔導。

  因數(shù)和倍數(shù)教學反思 3

  這是自入職以來第一堂得到李老師指點的課。感覺得到李老師課堂上對學生信任。也讓我更深一步的體會到,只有學生自己找出來的規(guī)律,特點,才能理解的更透徹,掌握的更牢固,應用起來更有效率。平日里,沒有給學生充分的時間,很多規(guī)律甚至是老師直接告訴學生的,雖然課堂教學的速度有了,但是效率并不高,后期教師要花費的時間更多。那才是真正的丟了西瓜撿芝麻!下面從幾點來分析本節(jié)課:

  一、優(yōu)點

  課堂掌控力不錯,教師的個人素質也不錯。

  二、不足

  1、 是除不盡的。但是課堂上,我卻當做了能除盡的。思考出現(xiàn)這個錯誤的原因,是自己對課堂、對學生的預設不足!

  2、26是13和2的倍數(shù),13和2是26的因數(shù)------大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!

  我非常清楚,倍數(shù)、因數(shù)是有依存關系的,而不能單獨說,但是課堂上卻說出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問題的話。失敗!

  歸結原因,還是課堂太想投機取巧。作為一個引導學生入門的老師,在知識的門口,真的不能有絲毫差池,更不能為了一時的省事,而為后面的教學買下禍根!

  三、除了錯誤,還有很多做的復雜、不到位的地方。

  1、開篇之時,復習自然數(shù),是為本節(jié)課作知識鋪墊用的,但是,問題中的“自然數(shù)有什么特點?”卻是一個設計失敗的問題。已經學到高等數(shù)學的我,自然之道,自然數(shù)的特點到底有多龐雜!根本不是一兩句話說的清的,但是我卻問了這樣一個問題。

  2、給定12張卡片列除法算式求商時,可以限定時間30秒,看說寫的又多又準確。也就是說能全員參與的,就單獨。讓學生在數(shù)學作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準備充分,也可以為后面的'分類打下堅實的基礎。

  3、找個一個數(shù)的因數(shù)時,要先找,在訂正,最后讓學生說說做法。而后更正練習,接著判斷,說方法。只有清楚的說出了方法,才能保證學生是真懂了。在這個過程中,還可以鼓勵學生總結一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了。ㄟ@個數(shù)的中間位置)

  4、本節(jié)課最好的量是到會找一個數(shù)的因數(shù)就可以了,接著歸納一個數(shù)因數(shù)的特點部分就拖堂了。內容不能很好的在一堂課中充分的展現(xiàn)!

  一堂課教會了我很多,尤其是在教學方法上,李老師后來的引導,讓我清楚的看到了學生的聰明,學生的觀察力!要相信學生------首先要給學生時間去觀察,去思考,去發(fā)現(xiàn)!否則,學生的思維永遠得不到真正的發(fā)展!能力無法得到充分的提升。

  因數(shù)和倍數(shù)教學反思 4

  一、單元主題圖體驗數(shù)學化過程。單元主題圖是教材中的一個重要內容,它是選擇某一個主題構建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學中,我是從培養(yǎng)學生的問題意識出發(fā)來組織教學的,首先讓學生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學習的成果;最后通過解決問題,體驗獲取知識的過程。教學中學生不僅很快找到了整數(shù)、小數(shù)、負數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學生提出了很多的數(shù)學問題,如我有50元可以買多少千克蘋果?學生真正是在自主學習的過程中提出問題、解決問題,體驗“數(shù)學化”的過程。

  二、數(shù)形結合實現(xiàn)有意義建構。教材中對因數(shù)概念的認識,設計了“用小正方形拼長方形”的操作活動,引導學生在方格紙上畫一畫,寫出乘法算式,再與同學進行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機地結合,防止學生進行“機械地學習”;學生對因數(shù)和理解不僅是數(shù)字上的認識,而且能與操作活動與圖形描述聯(lián)系起來,促進了學生的有意義建構,這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。

  三、探索活動關注解決問題的'策略。學生在探索活動中,運用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學會了思考,初步形成了解決問題的一些基本策略。

  四、困惑:

  1、第一次真正開始教北師大教材,最大的感覺是教學的空間真的擴大了,課堂活躍了,但是同時給學生進行課后輔導的時間也增加了,每節(jié)課從學生的反饋看來,卻有相當一部分的學生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎性”題目,整個一個單元只有一個練習一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。

  2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學生家長,就真的有學生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑

  因數(shù)和倍數(shù)教學反思 5

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。(1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的'學習,而是反其道而行之,通過乘法算式來導入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認真研讀教材,通過學習了解到以下信息:簽于學生在前面已經具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎,對整除的含義已經有了比較清楚的認識,不出現(xiàn)整除的定義并不會對學生理解其他概念產生任何影響。因此,本套教材中刪去了“整除”的數(shù)學化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  雖然學生已接觸過整除與有余數(shù)的除法,但我班學生對“整除”與“除盡”的內涵與外延并不清晰。因此在教學時,補充了兩道判斷題請學生辨析:

  11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?

  特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補了未進行整除概念教學的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進行了對比。

  因數(shù)和倍數(shù)教學反思 6

  因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學生學習理解起來有一定的難度,本節(jié)課是在充分借助學生已有的知識經驗的基礎上切入課題。學生在此之前已經認識了乘法各部分名稱,對“倍”葉有了初步的認識,從而本課由此入手,讓學生由熟悉的知識經驗開始,結合問題引發(fā)學生提升思考并發(fā)現(xiàn)新的知識結構,體會到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。

  在探索找一個數(shù)的'因數(shù)的方法時,為了讓學生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復,本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動),2、9(閃動),3、6(閃動)學生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學生難以真正理解的地方。

  本課中還要注意到的就是學生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質數(shù)、合數(shù)等,雖然此時學生還不知道這些數(shù)的概念,但這時給學生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學習做好鋪墊。

  因數(shù)和倍數(shù)教學反思 7

  北師大版五年級數(shù)學上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學好處,只是借助乘法算式加以說明,進而讓學生探究尋找一個數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個教學脈絡:乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個數(shù)的倍數(shù)。從教材本身來看,這部分知識對于五年級學生而言,沒有什么生活經驗,也談不上有什么新興趣,是一節(jié)數(shù)學味很濃的概念課。如何借助教材這一載體,讓學生在互動、探究中掌握相應的知識,讓乏味變成有味呢?我從以下兩個方面談一點教學體會。

  一、設疑遷移,點燃學習的火花。

  良好的開頭是成功的一半。我采用一道腦筋急轉彎題作為談話引入課題,不僅僅能夠調動學生的學習興趣,看似不相關的兩件事例中隱藏著共同點:一一對應、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。

  教學找一個數(shù)的倍數(shù)時,我依據(jù)學情,設計讓學生獨立探究尋找2的倍數(shù)、5的倍數(shù),學生發(fā)現(xiàn)2的倍數(shù)、5的.倍數(shù)寫不完時,通過討論,認為用省略號表示比較恰當,用語文中的一個標點符號解決了數(shù)學問題,自我發(fā)現(xiàn)問題自我解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。

  二、滲透學法,構成學習的技能。

  由于一個數(shù)倍數(shù)的個數(shù)是無限的,那么如何讓學生體會“無限”、又如何有序寫出來呢?我讓學生嘗試說出3的倍數(shù)。學生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學生展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的學生認為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,能夠很快地找到第幾個倍數(shù)是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費了“寶貴”的學習時光,但是學生從中能體會到學習的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風光無限。

  三、學練結合,及時把握學生學情。

  在學生通過具體例子初步認識了倍數(shù)和因數(shù)以后,通過超多的練習讓學生在練習中感悟,練習中加深理解概念;在探究出找倍數(shù)的方法以后,及時讓學生寫出2的倍數(shù)、5的倍數(shù),從而引導學生發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,并適時進行針對性練習,鞏固新知。

  課尾,我設計了四道達標檢測練習,將整堂課的資料進行整理和概括,對易混淆的概念加以比較,對本節(jié)課重要知識點進行檢測,及時掌握了學生的學情。

  縱觀整節(jié)課,學生在學習過程中自始至終處于主體地位,嘗試練習、自主探索、解決問題,教師只是加以引導,以合作者的身份參與其中。學生在思維上得到了訓練,探究問題、尋求解決問題策略的潛力也會逐步得到提高。

  因數(shù)和倍數(shù)教學反思 8

  教學中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎上認識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學時做了一些改動,讓學生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學生的算是就不局限于乘法,有一部分學生寫了除法算式。這樣學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在也有很多學生學習奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動的接受。如讓學生思考:你覺得3和12、4和12之間有什么關系呢?(對乘除法學生有著相當豐富的經驗,因此不少學生能說出倍數(shù)關系,可能說得不很到位,但那是學生自己的東西)。當學生認識了倍數(shù)之后,我進行了設問:12是3的倍數(shù),那反過來3和12是什么關系呢?盡管學生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學生體會到12是3的倍數(shù),反過來3就是12的.因數(shù),接下來4和12的關系,學生都爭者要回答。

  如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下五分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這不老師給予有有效得多。

  因數(shù)和倍數(shù)教學反思 9

  一、教材與知識點的對比與區(qū)別。

  1、對比新版教材知識設置與傳統(tǒng)教材的區(qū)別。有關數(shù)論的這部分知識是傳統(tǒng)教學內容但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內容的劃分還是從微觀方面——具體內容的設計上都獨具匠心!耙驍(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別1新課標教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學習而是反其道而行之通過乘法算式來導入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學習教參了解到以下信息學生的原有知識基礎是在已經能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認識不出現(xiàn)整除的定義并不會對學生理解其他概念產生任何影響。因此本教材中刪去了“整除”的數(shù)學化定義。

  2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。

  二、教法的運用實踐

  1、“因數(shù)與倍數(shù)”概念的數(shù)的應用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍因此對于學生和第一接觸的'印象是沒有什么可以探究和探索的要求而且給學生一個直觀的感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內與小數(shù)無關與分數(shù)無關與負數(shù)無關雖沒學但有小部分學生了解。同時強調——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經驗就是對于數(shù)學當中規(guī)定性的概念用直接講述法讓學生清晰明確。因此用直接導入法先復習自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。

  2、在進行延續(xù)性教學中可以讓學生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。

  因數(shù)和倍數(shù)教學反思 10

  因數(shù)和倍數(shù)是五年級下冊第二單元的教學內容,由于知識較為抽象,學生不易理解,因此我在教學時做到了以下幾點:

 。1)密切聯(lián)系生活中的數(shù)學,幫助學生理解概念間的關系。

  今天在教學前,我讓學生學說話,就是培養(yǎng)學生對語言的概括能力和對事物間關系的理解能力。于是我利用課前談話讓學生在找找生活中的相互依存關系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關系,從而使學生更深一步的認識倍數(shù)與因數(shù)的關系,

  (2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關系,列出乘法算式,初步感知倍數(shù)關系的`存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎。這樣不僅溝通了乘法和除法的關系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  (3)根據(jù)學生的實際情況,教學找一個數(shù)的因數(shù)的方法,雖然學生不能有序地找出來,但是基本能全部找到,再此基礎上讓體會有序找一個數(shù)因數(shù)的辦法學生容易接受,這樣的設計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

  (4)設計有趣游戲活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學生的學號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學生都站起來。出示地卡片應該是幾,找的朋友應該是倍數(shù)還是因數(shù)?學生面對問題積極思考,享受了數(shù)學思維的快樂。

  因數(shù)和倍數(shù)教學反思 11

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應著一對有整除關系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解因數(shù)倍數(shù)相互依存的關系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學,我特別注意下面幾個細節(jié)來幫助學生理解因數(shù)和倍數(shù)的概念。

  一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質上任是以“整除”為基礎。所以我上課時特別注意讓學生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。

  二是要學生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的`聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“1.5是0.3的5倍”,也可以說“1是3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復強調,幫助孩子們認真理解辨析,所以學生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。

  因數(shù)和倍數(shù)教學反思 12

  本單元注意以下幾個方面的教學,可以促進學生鞏固基礎知識,促進學生發(fā)展基本思維能力。

  1.加強概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。

  本冊新教材采用整數(shù)除法的表示形式教學,便于學生感知因數(shù)和倍數(shù)的本質意義。注意因數(shù)與倍數(shù)的相互依存的關系;質數(shù)、合數(shù)與因數(shù)的關系;偶數(shù)、奇數(shù)與2的倍數(shù)的關系等,形成概念鏈,依靠理解促進記憶!

  2.注意培養(yǎng)學生的抽象概括與歸納推理能力

  關注由從具體到抽象、由特殊到一般的概括、歸納過程,即從個別性知識推出一般性結論。如質數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進行歸納推理,熟悉20以內的質數(shù),制作100以內質數(shù)表。

  3.教給學生養(yǎng)成“有序學習”的良好學習習慣。

  4.加強解決問題的教與學,新教材增加了探索兩數(shù)之和的奇偶性的純數(shù)學問題,可以根據(jù)兩數(shù)之和的奇偶性的'規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。

  5.拓展學生的知識面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開拓視野,發(fā)展思維!

  因數(shù)和倍數(shù)教學反思 13

  新教材在引入倍數(shù)和因數(shù)概念時與以往的老教材有所不同,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質上仍是以整除為基礎。我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我從以下三個方面談一點教學體會。

  一、設疑遷移,點燃學習的火花

  良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進入正題,不僅可以調動學生的學習興趣,一一對應、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。

  教學找一個數(shù)的倍數(shù)時,我依據(jù)學情,設計讓學生獨立探究尋找3的倍數(shù)。我設計了嘗試練——引出沖突——討論探究這么一個學習環(huán)節(jié)。學生帶著“又對又好”的要求開始自主練習,學生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學生充分討論的基礎上,我組織學生圍繞“好”展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的學生認為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,學生發(fā)現(xiàn)3的倍數(shù)寫不完時都面面相覷,左顧右盼。學生通過討論,認為用省略號表示比較恰當。用語文中的一個標點符號解決了數(shù)學問題,自己發(fā)現(xiàn)問題自己解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。

  二、操作實踐,舉例內化,認識倍數(shù)和因數(shù)

  我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。

  三、注重細節(jié),注重學生的習慣培養(yǎng)

  學生在找一個數(shù)的因數(shù)時最常犯的`錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

  這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在總結倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時間,直接以3個小問題出示,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。

  因數(shù)和倍數(shù)教學反思 14

  本節(jié)課是在學生已經學習了一定的整數(shù)知識的基礎上進行教學的。

  課堂中,我首先讓學生理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調的是對于因數(shù)和倍數(shù)的`含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  其次,厘清概念倍數(shù)和幾倍,注重強調倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內,也可以在小數(shù)范圍內進行研究,它的研究范圍較之倍數(shù)范圍大一些。

  本節(jié)課的不足之處:

  1.練習設計容量少了一些,導致課堂有剩余時間。

  2.對因數(shù)和倍數(shù)的含義還應該進行歸納總結上升到用字母來表示。

  因數(shù)和倍數(shù)教學反思 15

  一.數(shù)形結合減緩難度

  《因數(shù)和倍數(shù)》這一內容,學生初次接觸。在導入中我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。讓學生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。

  二.自主探究,合作學習

  放手讓每個同學找出36的所有因數(shù),學生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的'答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。

  三.在游戲中體驗學習的快樂

  在最后的環(huán)節(jié)中我設計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。

  這堂課我還存在許多不足,我的教學理念很清楚,課堂上學生是主體教師只是合作者。但在教學過程中許多地方還是不由自主的說得過多,給學生的自主探索空間太少。

  因數(shù)和倍數(shù)教學反思 16

  這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

  一、 操作實踐,舉例內化,認識倍數(shù)和因數(shù)我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。首先根據(jù)一道應用題,通過對學生隊伍的理解讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義。使學生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。

  二、自主探究,意義建構,找倍數(shù)和因數(shù)整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的`意義,探索并掌握找一個數(shù)的倍數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。

  因數(shù)和倍數(shù)教學反思 17

  《倍數(shù)和因數(shù)》是四下第九單元的內容。教學時,我首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作到直觀感知,讓學生自主體驗數(shù)與形的結合,進而形成倍數(shù)與因數(shù)的意義,使學生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學生很容易接受,再通過學生自己舉例和交流,進一步加深對倍數(shù)和因數(shù)意義的`理解。從學生的反應和課堂氣氛來看,教學效果還是不錯的。

  能不重復、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學難點。教學時,我先讓學生自己找3的倍數(shù),匯報交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個數(shù)的倍數(shù)的方法。對于倍數(shù),學生在以前的學習中已有所接觸,所以學生很容易學,用的時間也比較少。

  對于找一個數(shù)的因數(shù),學生最容易犯的錯誤就是漏找,即找不全。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學生有序的思考,形成明晰的解題思路。學生通過觀察,發(fā)現(xiàn)當找到的兩個自然數(shù)非常接近時,就不需要再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點。

  因數(shù)和倍數(shù)教學反思 18

  聽了陶老師執(zhí)教的《倍數(shù)和因數(shù)》一課,我有以下幾點體會。

  1、倍數(shù)和因數(shù)是一個比較抽象的知識。在教學中,陶老師讓學生擺出圖形,通過乘法算式來認識倍數(shù)和因數(shù)。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據(jù)乘法算式,從學生已有知識出發(fā),學習倍數(shù)和因數(shù),初步體會其意義。在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學生初步體會倍數(shù)和因數(shù)的含義。在學生初步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,陶老師還設計了讓學生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),讓學生明白除法算式中也能找出倍數(shù)和因數(shù)。最后,陶老師出示了五個數(shù),讓學生從中找找,說說誰是誰的倍數(shù),誰是誰的因數(shù)。這一設計既是對上面內容的提升,又引出了下面的內容。

  2、一個數(shù)的因數(shù)和倍數(shù)的`尋找,課本上是安排先教學倍數(shù)后教學因數(shù)的。陶老師在教學時,打破了教材的安排,首先教學找一個數(shù)的因數(shù)。我覺得這樣做比較好,找因數(shù)的方法比較難一點點,它需要學生的逆向思維,所以陶老師一步一步的引導著學生,扶放結合地讓學生去探索找一個數(shù)因數(shù)的方法,隨后再去教學找一個數(shù)的倍數(shù),學生就容易找準了。這樣安排既承接了上面的內容,又為學生一個數(shù)的倍數(shù)提供了方法。

  因數(shù)和倍數(shù)教學反思 19

  本節(jié)課是第二單元的第一課時,第二單元的教學內容較為抽象,很難結合生活實例或具體情境來進行教學,學生理解起來有一定的難度。加強對概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。還有要引導學生用聯(lián)系的觀點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關聯(lián)的概念和結論。

  今天這節(jié)課的教學的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關系,于是我利用課前談話讓學生在找找生活中的相互依存關系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,初步學會從數(shù)學的角度去觀察事物、思考問題,激發(fā)對數(shù)學的興趣,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關系。然后我讓學生根據(jù)情境列出乘法算式,初步感知倍數(shù)關系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的'倍數(shù)奠定了良好的基礎。同時,我還出示了一個除法的算式,讓學生來找找倍數(shù)和因數(shù)的關系,這樣不僅溝通了乘法和除法的關系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  找出一個數(shù)的因數(shù)要做到不重復和不遺漏,有些學生還不能找全,沒有掌握方法,我在今后的教學中還要注意對學困生的輔導。

  因數(shù)和倍數(shù)教學反思 20

  這個單元課時數(shù)比較多,對于學生數(shù)感的要求比較高,對于學生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓練。通過一個單元的教學,發(fā)現(xiàn)學生在以下知識點的學習和掌握上還存在一些問題:

  1、最大公因數(shù)和最小公倍數(shù)

  教學中,我讓學生經歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關系的數(shù)(倍數(shù)關系或互質數(shù))直接根據(jù)規(guī)律寫結果。根據(jù)復習和練習反饋,發(fā)現(xiàn)學生對數(shù)的感覺比較欠缺,特殊關系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學生對找最大公因數(shù)和最小公倍數(shù)學不扎實,將直接影響到后面的約分和通分。所以我準備在平時每節(jié)課都有三到五個訓練,并進行專項過關。在應用這個知識解決實際問題時,有少數(shù)后進生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。

  2、質數(shù)合數(shù)與奇數(shù)偶數(shù)

  這四個概念按照兩個不同的標準分類所得。學生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。

  3、235倍數(shù)的特征

  如果單獨讓學生去說去判斷一個數(shù)是不是235的倍數(shù),學生比較清楚,但在靈活應用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進行反應,數(shù)的'感覺不佳。

  以上是本單元學生在學習過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓練。多給學生一點耐心,再堅持一份恒心,相信學生們會有提高,會有改變。

  因數(shù)和倍數(shù)教學反思 21

  在本課教學時,先讓學生用12個同樣大小的正方形,擺成一個長方形,并用乘法算式把自己的擺法表示出來,讓學生動手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學生小組交流、操作后,以其中的一道乘法算式為例,引出倍數(shù)和因數(shù)的概念。

  這樣的安排,體現(xiàn)了以學生為本,用學生已有的經驗和動手操作能力,很好的調動了學生學習的積極性和主動性。一方面讓學生樂于接受,是學生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學生善于觀察和傾聽他人的想法的良好學習態(tài)度。對于找一個數(shù)的倍數(shù)比找一個數(shù)的因數(shù)的方法要容易些,所以我先教學如何找一個數(shù)的倍數(shù),在學生學會了找一個數(shù)的倍數(shù)的方法基礎上,再教學如何找一個數(shù)的因數(shù),這樣教學便于學生自己探索并總結歸納出找一個數(shù)的因數(shù)的方法,體現(xiàn)了讓學生自主學習。

  在處理本節(jié)課的難點找36的因數(shù)時,我原來是放手讓學生自己去找的。結果試上時很多學生沒有頭緒,無從下手。時間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個的.因數(shù)是學生以前從未遇到過的問題,自然不知道如何解決。再加上找一個數(shù)的因數(shù)比找一個數(shù)的倍數(shù)要難得多,我這樣貿然地放手,學生當然不知所措了。后來,在處理找36的因數(shù)時,如何做到既不重復又不遺漏地找36的因數(shù)?我認為要對學生扶放得當,要有適當?shù)胤,學生才能探索出方法。于是,我讓學生回憶剛才的幾道乘法算式,然后把找一個數(shù)的倍數(shù)的方法有效的遷移到找一個數(shù)的因數(shù)中。果然學生知道了該如何思考后,效果好了很多。

  因數(shù)和倍數(shù)教學反思 22

  開學后上第一節(jié)課年級組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點不習慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還可以。

  因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎上教學因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學前,我是先讓學生進行了預習,開課伊始,就揭示課題,讓學生談自己對因數(shù)與倍數(shù)的理解。學生結合一個乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時間。學生的學習興趣被激發(fā)了、思維被調動起來了,主動參與到了知識的學習中去了。

  能不重復、不遺漏找出一個數(shù)的因數(shù)是本課的難點,絕大部分學生都能仿照找12的因數(shù)去找,孩子都能一對一對的找,可遺漏的多,在這里我強調按順序找,也就是從“1”開始,依次找,這樣效果很好。

  為了得出因數(shù)的特點,我出了“24的因數(shù),36的因數(shù),18的因數(shù)”,并認真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時間不夠,我只要求孩子從因數(shù)的個數(shù),最小,最大的`因數(shù)考慮,沒有對質數(shù),合數(shù),公因數(shù)進行滲透。找一個數(shù)的倍數(shù)因為方法比較易于掌握,沒有過多的練習,二是激發(fā)他們想象一個數(shù)的倍數(shù)有什么特點。

  針對這節(jié)課,課后老師們就這堂課認真評析,真誠的說出自己的觀點,特別就知識的生長點、教學的重難點展開了討論,特別是找一個數(shù)的因數(shù),應注重方法的指導。由此,我們數(shù)學課堂教學應注意一下幾點:知識的滲透點、練習發(fā)展點、層次切入點、設計巧妙點、教法多樣點、語言動聽點、管理到位點、應變靈活點。

  這幾點既是目標也是方向,相信我們在新的一學期,團結協(xié)作,勤奮務實,努力朝著目標前進。

  因數(shù)和倍數(shù)教學反思 23

  《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復習課分以下四部分。

  1、先從自然數(shù)入手,由自然數(shù)的概念讓學生總結自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。

  2、由偶數(shù)都是2的'倍數(shù),復習2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學生邊復習老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的關系,加深了學生對倍數(shù)與因數(shù)相互依存關系的理解和認識。

  3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質數(shù)、合數(shù)和1。復習什么是質數(shù),什么是合數(shù)。最小的質數(shù)是幾,最小的合數(shù)是幾。20以內的質數(shù)。為什么1既不是質數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質數(shù)還是合數(shù),若是合數(shù)讓學生分解質因數(shù)。先說分解質因數(shù)的方法,然后點名學生板演,教師巡視。指出錯誤。

  4、帶領學生一起做練習,讓學生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內容全面;練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。

  不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。

  因數(shù)和倍數(shù)教學反思 24

  本節(jié)課的內容涉及的概念非常多,即抽象又容易混淆,如何使學生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構建知識之間的網(wǎng)絡體系是本節(jié)課教學的重難點。

  成功之處:

  1.構建知識網(wǎng)絡體系,理清知識之間的相互聯(lián)系。在教學中,我首先通過一個聯(lián)想接龍的游戲調動學生學習的興趣,讓學生利用因數(shù)和倍數(shù)單元的`知識來描述數(shù)字2,學生非常容易想到2是最小的質數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個位是0、2、4、6、8的數(shù),通過學生的回答教師及時抓住其中的關鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2、3、5的倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡潔、更加有序、更加能體現(xiàn)知識之間的聯(lián)系呢?通過學生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學生相互學習、相互借鑒,逐漸對這些概念的聯(lián)系有了更進一步的認識,然后通過選取幾名同學的作品進行展評,最后教師和學生共同進行整理和調整,最終來完善知識之間的網(wǎng)絡體系。

  2.在練習中進一步對概念進行有針對性的復習。在練習環(huán)節(jié)中,我根據(jù)這些概念設計了一些相應的練習。目的是以練習促復習,在練習中更好的體會這些概念的具體含義,加深學生對概念的理解和掌握。

  不足之處:

  個別學生在展評中不會去評價,只是從設計的美觀上去思考,而沒有從體現(xiàn)知識之間的聯(lián)系上去進行說明。

  再教設計:

  抓住數(shù)學知識的本質,美觀的整理形式只是一些外在的,并不是重點。

  因數(shù)和倍數(shù)教學反思 25

  因數(shù)和倍數(shù)是蘇教版五年級下冊第三單元的內容。這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎上認識因數(shù)倍數(shù)。而教材是通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。我在教學時做了一些下的改動,例題從12個相同的正方形拼長方形開始教學,學生對這個活動已經很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長方形。因此,我要求不用12個正方形拼,而是在腦子里“想像拼”,不能想象的就在本子上“畫拼”,“拼”好后,我也要求只用一個乘法算式表示你的拼法,這樣不僅節(jié)省了不少時間,更主要的是我覺得這樣的操作活動,雖然看起來不熱鬧,但學生的學習興趣被激發(fā)了、思維被調動起來了,主動參與到了知識的學習中去了。

  能不重復、不遺漏,有序地找出一個數(shù)的因數(shù),是本課的教學難點。在教學中,我是這樣設計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學生看著黑板上的算式很快可找出12的因數(shù),接著再提問:你是怎么看出來的?根據(jù)一個乘法算式可以得到12的幾個因數(shù)?在學生回答之后,我接著請同學們用剛才的方法自己找一找36的因數(shù)有哪些。在匯報時,重點解決如何有序、不重復、不遺漏地找出一個數(shù)的因數(shù)。雖然這樣的教學設計,看起來學生的主動探索過程好像削弱了好多,但根據(jù)試上這課時的情況看,這樣的'設計比直接讓學生自主探索36的因數(shù)有哪些學習效果要好一些。直接探索36的因數(shù)有哪些,放得太開,學生無從下手,暴露出了許多問題,有的不知道該如何找因數(shù),有的沒有找全,而學生在教師的引導下,發(fā)現(xiàn)了找一個數(shù)因數(shù)的方法后接著去找36的因數(shù),那么他所關注的是如何有序地找出一個數(shù)的因數(shù),這樣的思考更有針對性,目標也更明確,對知識的掌握也能做得更好。

【因數(shù)和倍數(shù)教學反思】相關文章:

《因數(shù)和倍數(shù)》教學反思02-06

《倍數(shù)和因數(shù)》教學反思04-11

倍數(shù)和因數(shù)教學反思01-16

因數(shù)和倍數(shù)教學反思01-28

倍數(shù)和因數(shù)教學反思精選15篇03-31

《倍數(shù)和因數(shù)》教學反思15篇04-11

因數(shù)和倍數(shù)教學反思15篇01-29

倍數(shù)和因數(shù)教學反思15篇02-28

倍數(shù)和因數(shù)教學反思(15篇)02-28