解方程教學反思(精選15篇)
在日常生活中,課堂教學是重要的任務(wù)之一,反思自己,必須要讓自己抽身出來看事件或者場景,看一段歷程當中的自己。反思要怎么寫呢?以下是小編精心整理的解方程教學反思,希望能夠幫助到大家。
解方程教學反思 1
本節(jié)課是在認識用字母表示數(shù)的基礎(chǔ)上進行教學的,用天平保持平衡的原理解方程教學利,也就是我們常說的等式的基本性質(zhì)解方程。
教學中我先利用板書演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多塊,怎么辦?”,引導(dǎo)學生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學生快速的寫出了我想要的答案:x+3—3=9—3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學生沉默,有學生說,“為了得到一個x得多少”,我又強調(diào)了一遍,我求一個x的多少,所以要把多余的3減去。接下來教學例2,同樣我利用天平原理幫助學生理解,在學生說出要把天平兩端平均分成3分,得到每份是6的基礎(chǔ)上,我用板演演示了分的過程,讓學生把演示過程寫出來,從而解出方程。在此基礎(chǔ)上我引導(dǎo)學生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。
按理說,只要稍加類推,學生應(yīng)該能掌握方程的解法。但接下來的`練習出人意料,除了少數(shù)成績較好的學生能按照要求完成外,大部分幾乎不會做,甚至動不了筆。問題出在哪里?經(jīng)過認真反思總結(jié)如下:
一是從天平過渡到方程,類推的過程學生理解不透,天平兩端同時減去3個方塊,就相當于方程兩邊同時減去3,這個過程寫下來時,要強調(diào)左右兩邊原來狀態(tài)保持不變,要原樣寫下來,如果這樣的話就不會造成有的學生不會格式;
二是對為什么要減去3討論不夠,雖然有學生回答上來了,我應(yīng)該能覺察出學生理解有困難,課件和天平能讓學生懂得方程兩邊要同時減去相同的數(shù),至于為什么這里要減去3卻還似懂非懂,如果當時舉例說明也許很有效果,比如:x—3=6,我們該怎么辦呢?學生通過對比討論,就會發(fā)現(xiàn)我們要求出一個x是多少,就要根據(jù)方程的具體情況,若比x多余的就要減去,不足x的就要補足,這樣效果肯定好些。
解方程教學反思 2
教學《解方程》這部分內(nèi)容時,我一開始就有些擔心學生不容易學好。因為方程的思維方式和原來的解決問題思考方式完全不同,而學生已經(jīng)習慣了原來的思考模式,恐怕很難接受新的方法,即使這種方法的思維含量更少,完全不用拐彎抹角地思考,不用逆向思維。學生對于新的東西,總是因為不熟悉而否定它的簡便好用,因為對他們來說用起來不熟練就是不方便的。其次是解方程、驗算、用方程解決問題等都需要固定的格式,學生要花時間適應(yīng)這種格式記住這種格式,并熟練地應(yīng)用也是一大難點。
在上課時,我是先按照書上例子展開教學。然后我說明,列方程解決問題就是把實際情況最直接地表示出來,比如天平左邊是杯子和水,水的質(zhì)量是x克,就寫100+x,右邊是砝碼250克,左右平衡,用等號連接,列成的方程就是100+x=250。
接著教學怎么解方程,求出方程的解。我讓學生自己來求x等于多少,學生都能解決。書上介紹的方法是兩邊同時減去同一個數(shù),左右兩邊仍然相等。但是學生的方法都是根據(jù)加法算式中各數(shù)的關(guān)系來求的。即使有些學生說不清自己是用什么方法,我也能看得出來是用這種方法。我肯定了學生的方法,再從天平的原理出發(fā)介紹了書上的方法,然后問學生:你們喜歡哪種方法?學生幾乎異口同聲地肯定了自己的方法。因此,我說,那我們就用自己用得好的方法來求方程中的未知數(shù)。同時,介紹了使方程左右兩邊相等的未知數(shù)的值叫方程的解,求出方程的解的過程叫解方程。認識了概念后,要及時加以鞏固。我出了兩道題幫助學生鞏固概念。
二是讓學生來解方程。學生很快能算出來,我告訴學生解方程的寫法跟我們以前的計算寫法不同,它有特定的'格式,我一邊講解格式一邊板書。要求學生讀一讀解方程的過程,看是否理解,再在自己的本子上寫出過程。然后重新做了一道加以鞏固。接下來的難點是驗算。我先講解怎么驗算,再請學生來說驗算過程,然后把驗算過程也按照特定格式寫下來。
學生作業(yè)反饋時,有幾個問題:
一、用方程表示題目中的數(shù)量關(guān)系很多都用老方法;
二、解方程的格式寫法容易出錯;
三、方程的解的驗算過程不是很理解,經(jīng)常出錯。
作業(yè)講評時我們一起糾正了錯誤,概括了錯誤類型,要求學生避免這些錯誤,然而一些學生依然在重復(fù)原來的錯誤。這是數(shù)學教學中常有的現(xiàn)象,有些題目第一次用了錯誤的方法,往往糾正很多次還是習慣用錯誤的方法。
我反思了自己的教學,也有幾點想法:
一、用方程來表示數(shù)量關(guān)系學生出現(xiàn)困難,是通過我的幫助列出方程,我并沒有及時讓學生鞏固方法。
二、解方程、驗算的過程和格式的教學以我的講解為主,而那時我沒有想辦法很好的提高學生的注意力,因此學生練習時丟三落四較多。
三、我的講解過多,學生自己的思考過少,類似于灌輸,學生學習較被動,到最后模仿解法和格式為主,卻沒有理解為什么這樣寫,因此學生有時正確,有時出錯,沒有掌握好。
四、這個教學內(nèi)容對我們的學生來說,難點較多,而我并沒有為學生的接受能力進行減負思考,一股腦地把所有新的東西都倒給學生,造成學生超負荷。
解方程教學反思 3
五年級第四單元教材的設(shè)計打破了傳統(tǒng)的教學方法。在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和—另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。
在教學前,由于我個人比較偏好于傳統(tǒng)的教學方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的教學思想,更新教學觀念,我深入了解新教材的'涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學生是學習的主人”和“教師是學習的組織者、引導(dǎo)者與合作者”的這一角度上,為學生創(chuàng)設(shè)學習此課的情境,通過直觀演示,充分給學生提供小組交流的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學習活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務(wù)。
解方程教學反思 4
《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領(lǐng)域中的一個重要內(nèi)容,是“代數(shù)”教學的起始單元,對于滲透與發(fā)展學生的代數(shù)思想有著極其重要的作用。
在開課時,通過復(fù)習哪些是方程,鞏固方程的含義,為后面教學作鋪墊。
教學時,我讓學生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗的方法及書寫格式,并在后面的鞏固練習當中加入口答檢驗,根據(jù)課本上的“注意”強調(diào)說明雖然不要求每題都寫出檢驗,但都要口算進行檢驗,使學生養(yǎng)成良好的學習習慣。
在出示概念時,先讓學生自學了概念。自學完概念后,應(yīng)讓學生對兩概念講講自己的理解,自己勾畫出重點字,然后才是教師對概念重點的強調(diào),這樣更能區(qū)分兩概念不同的含義,對難點的突破也是一個很好的方法,可以讓學生將易混易錯的地方,清楚理解后,明確兩概念的區(qū)別,這點在課上忽略了。
在后面的.反饋練習時,因前面例題的格式講的還不夠明確,所以練習時有點反復(fù),但在后面的練習中學生已完全掌握。鞏固練習的層次很好,由易到難,對學生的學習有突破,學生完成的正確率也很高。
這節(jié)課整體來說我比較滿意,對于細節(jié)上的處理。在今后的教學中我會更加注意,使教學更加嚴謹,也會更注意教材的研讀,爭取上一節(jié)完美的好課。
解方程教學反思 5
教材是利用等式的性質(zhì)來解方程。通過天平游戲,探索等式兩邊都加上(或減去)同一個數(shù),等式仍然成立,等式兩邊都乘一個數(shù)(或除以一個不為0的數(shù)),等式仍然成立的性質(zhì)。利用探索發(fā)現(xiàn)的等式的性質(zhì),解簡單的方程。如求出y+8=10中的未知數(shù)y。教材呈現(xiàn)了兩種思路。一種是學生直接想“?+8=10”,從而得出答案。另一種是利用等式的性質(zhì)解方程,即“方程的兩邊都減8”的方法。y+8-8=10-8,y=2。這樣解方程,剛開始時,為了學生理解方便,等號左邊的“+8-8”都要寫出來,會比較麻煩,也容易出錯!稊(shù)學課程標準》提倡算法多樣化的新理念,激發(fā)了我對解方程這課從不同的'角度來進行解讀和探討,因此,在學生理解了用等式的性質(zhì)解方程后,我又留給學生一定的時間和空間,讓學生獨立思考,發(fā)揮各自的聰明才智,自主探索,找出不同的解題方法。
學生經(jīng)歷了獨立思考,掌握的知識才更深刻、更透徹。久而久之,將促使學生養(yǎng)成獨立思考的習慣,培養(yǎng)了學生解決問題的能力。將學生的方法整理后,我又適時給學生提供了另外兩種解方程的方法,利用加、減、乘、除法各部分之間的關(guān)系來解方程和通過移項來解方程。
解方程教學反思 6
前兩天講解了簡單的方程的解法,加法、減法乘法除法的,覺得孩子們接受的不錯,一節(jié)課下來練習了好多題,每個孩子都能得心應(yīng)手,自己還有點竊喜?墒墙裉靺s讓我大跌眼鏡。
昨天上課講解了例4和例5,孩子們對了復(fù)雜的方程有了初步認識,但在每一步的分析之下孩子們也覺得很熟悉,原來是簡單的方程結(jié)合在一起變成復(fù)雜的,只要掌握運算順序就不難,結(jié)合例題的圖示,分彩筆的例子,先分什么再分什么,讓學生明白在具體算式中也是結(jié)合著實物圖來做,先把3x看做一個整體,把剩下的4根彩筆減掉,要想得到一整盒x根的`彩筆,就得把3整盒再平均分配,這樣下來孩子們能夠明白每一步的意思,他們能夠知道先處理多余的彩筆,再考慮整盒的彩筆。這樣下來理解也不是問題,又練了幾道同類的題,也很順手。例5的講解上有些難度,孩子始終不太理解把括號看做一個整體,但在講解和練習下也能做上了。
今天我想驗收一下昨天學的怎么樣,結(jié)果讓我很頭疼,為什么過了一宿好多同學又沒了思緒,留了6道題,少數(shù)幾個好同學能夠順利的做上,大部分同學還在思索著,課下輔導(dǎo)了幾個差生,原來他們又把前面學的簡單的方程解法又忘了,自己思考了一下,得給孩子們消化時間,課上會了不代表他們一直不忘,還得多加練習啊
解方程教學反思 7
教學解方程共5個例題,以前的教法是利用加減乘除各部分之間的關(guān)系解;新教材使用的方法是利用等式的性質(zhì),應(yīng)該說這種方法不用怎樣理解,方程兩邊同時加減乘除一個數(shù),方程兩邊依然相等。而利用加減乘除各部分之間的'關(guān)系解,學生由于因各部分之間的關(guān)系混亂容易出錯,而初中的教學也是利用了等式的性質(zhì),于是和本組老師討論了一下,確定利用等式的性質(zhì)進行教學,最后學生掌握方法之后,再利用加減乘除各部分之間的關(guān)系講解一遍。然后讓學生根據(jù)自己實際情況靈活運用。
可是跟設(shè)想的不一樣,利用等式的性質(zhì)進行教學時,有些地方學生還是不好理解,我分析了一下,覺得存在這樣的問題。
1、如32—X=45,6÷x=3這樣的方程,X在里面,學生不好理解為什么方程兩邊同時加X或同時乘X,我和學生又從天平開始,講解,如果兩邊同時減32,或同時除以6,依然算不出X,我們?nèi)绻瑫r加X或同時乘X,然后變成a+X=b或ax=b的形式,再利用所學的方法進行解方程就可以了,可是依然有部分學生沒有掌握起來。
2、書寫問題,利用等式的性質(zhì)進行解方程時,書寫比較繁瑣,學生在比較之后,還是覺得用加減乘除各部分之間的關(guān)系解題時,書寫簡單一些。
所以,鑒于存在的問題,應(yīng)該讓兩種方法同時并存,讓學生根據(jù)自己情況,靈活選擇解方程的方法。
解方程教學反思 8
《解方程》是學生接觸方程以來的第一堂計算課,理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。本著孩子比較感興趣的基礎(chǔ)上,本節(jié)課我采用的是課前預(yù)習,課上交流的形式進行,整節(jié)課大多數(shù)孩子在預(yù)習的'基礎(chǔ)上能夠掌握方程的解法,但是個別孩子沒有掌握,F(xiàn)反思如下:
1、出示預(yù)習提綱,讓孩子預(yù)習有根據(jù)。
為讓孩子形成自覺的學習習慣,師指導(dǎo)孩子進行預(yù)習,出示了以下三個問題:
一是什么是方程的解?舉例說明。
二是什么是解方程?你是根據(jù)什么來解方程?
三是如何進行方程的檢驗?
好多孩子能夠?qū)@幾個問題進行探究,并對意義理解比較深刻。
2、課上交流。
交流是學生思維火花的碰撞。對于什么是方程的解,孩子們舉例子,根據(jù)例題來詮釋方程的解的意義。在進行交流根據(jù)什么來解方程的環(huán)節(jié)中,孩子們各抒已見,有的是用加法中各部分間的關(guān)系,有的是用等式的性質(zhì),還有的還接口答。依次把方法展示給大家,讓孩子明白方程的解的意義和解方程的過程。再確定統(tǒng)一的解答方法,這個環(huán)節(jié)孩子興趣很高,大部分孩子能夠?qū)W會利用等式的性質(zhì)進行解方程。整個的環(huán)節(jié)讓孩子在探究中發(fā)現(xiàn)規(guī)律,找到方法,學生學的開心,對于概念的理解也很扎實。
解方程教學反思 9
1.認知基礎(chǔ)的“頑固性”
心理學研究表明,當人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問題,從而也就不容易順利地實現(xiàn)由“過程”向“對象”的轉(zhuǎn)變。在一至四年級,學生都是根據(jù)四則運算各部分之間的關(guān)系來做計算的,它既是學生十分熟悉的運算規(guī)律,同時又為新知的學習提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運算,從這個角度去看,當然也可以運用四則運算各部分之間的關(guān)系來做。而且,四則運算各部分之間的關(guān)系學生是先入為主、根深蒂固的,具有相對的“頑固性”,甚至在一定程度上會排斥新學的等式的性質(zhì),導(dǎo)致思維的“過早封閉”。因此,大多數(shù)學生這樣做也就可以理解了。
2.兩種方法形式上的.相似引發(fā)學生思維的惰性
第一種方法書寫較少,形式簡單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡寫成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學生形成思維惰性,就不會再去深究思路和觀念的不同,更不會創(chuàng)新解法。
方程變得順理成章、水到渠成。學生深刻認識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。這時,教師再適時介紹教材之所以這樣編排是為了中小學方程解法的銜接,使學生認識到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。
解方程教學反思 10
解方程是數(shù)學領(lǐng)域里一個關(guān)鍵的知識,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學生開始學習解方程,作為教師的我更應(yīng)該讓學生吃透這方程,突破這重難點。
在教這單元之前,我一直困惑解方程要采用初中的“移項”解題,還是運用書本的“等式性質(zhì)”解題,還有老教材中提到的運用關(guān)系式各部分之間的關(guān)系來解決?面對困惑,向老教師請教,學生該吸收那種方法呢?困惑,學生該如何下手,運用“移項”解題,學生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時,在碰到a—x=b和a÷x=b此類的方程,學生能如何下手,“四則運算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學參考書):新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數(shù)起步教學的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標準》的要求,從小學起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學數(shù)學教學的銜接。從這不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學生清楚準確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學生帶來的是局部的銜接,而存在局部對學生會更困難,如a—x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運用等式基本性質(zhì)教學孩子會解簡單的方程,以便初中學習可以銜接,而初中的“移項”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的`方便性,我再教學老教材的“四則運算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學生會解各種題型的方程。在我看來,這樣的教學書本的知識不丟,方法又可以多種變通。
通過這塊知識的整理,我感覺到教材需要教師好好的研究,才能用最合適的方式去教導(dǎo)學生,數(shù)學經(jīng)常存在一種一題多解情況,老師就是引導(dǎo)學生走最好最合適的路。
解方程教學反思 11
解方程這部分教學內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天平平衡的道理解方程,學生在理解和運用上都有一定的困難,而且本部分教學很是枯燥無味,于是我加入了探秘的情節(jié),和本節(jié)課完全吻合。下面就我講授的這節(jié)課做一下反思:
一、本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學重點和難點服務(wù),因此我進行了大膽的嘗試,在講解方程的解時,給學生一個明確的目的,告訴他們:“解方程就是為了求出“方程的.解”而“方程的解”是一個神奇的數(shù),它能使方程的左右兩邊相等,不信咱們試一試!庇纱艘鹆藢W生的好奇心,通過練習讓學生充分感知“方程的解”的神奇之處。既讓學生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學會了本節(jié)課的知識。對于概念的理解也很扎實。
二、在練習題的安排上也做了精心的安排,當講授完利用天平平衡的道理解方程后,馬上進行了“填空練習”,這四個練習題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學和課后的練習看,學生對解方程掌握的還不錯。
本節(jié)課不足之處在于最后留的時間過少,檢驗的格式?jīng)]有完整的交給孩子們。可內(nèi)心矛盾:檢驗的目的已經(jīng)達到了,必須要重視其格式嗎?
總體來說,喜歡讓孩子們在快樂中學到知識,喜歡聽孩子們說:“我還想再寫。”
解方程教學反思 12
這次教材的設(shè)計打破了傳統(tǒng)的教學方法,在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用關(guān)系來求出方程中的未知數(shù)。而北師大版教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。
原來教學由于我個人比較偏好于傳統(tǒng)的教學方法,在教學的過程中沒有特別強調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學生沒能很好地理解等式的性質(zhì),所以大部分的學生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來計算,只有極個別的學生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的.過程是一個等式的恒等變形。并能站在“學生是學習的主人”和“教師是學習的組織者、引導(dǎo)者與合作者”的這一角度上,為學生創(chuàng)設(shè)學習此課的情境,提供動手操作、實踐以及小組合作、討論的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。
盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應(yīng)從一個一個具體的等式抽象到未知的等式,學生容易接受,而我是直接用抽象的等式驗證的,學生不太容易接受。還有在解方程時,算理講得不太清楚,學生在解方程時,有部分學困生學起來有困難。
在今后的教學中,一定要吃透教材,認真鉆研教材,才能上出優(yōu)質(zhì)課。
解方程教學反思 13
本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學重點和難點,因此我進行了大膽的嘗試,在講解方程的解時,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關(guān)系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導(dǎo)學生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當于6個方塊,從而得到x=6。
你能把稱的過程用算式表示出來嗎?大部分學生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標是求一個x的多少,所以要把多余的3減去。在此基礎(chǔ)上我引導(dǎo)學生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。另外我還要求學生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。
在做練習時我發(fā)現(xiàn)大部分的.學生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來求出方程中的未知數(shù),只有個別學生懂得運用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
解方程教學反思 14
這節(jié)課,先復(fù)習了方程的概念后,馬上讓學生說說方程需要滿足幾個條件,讓學生意識到方程是一種特殊的未知數(shù),然后出判斷題,讓學生進一步加深理解方程的意義,并讓學生明白等式和方程的區(qū)別聯(lián)系,緊接對有關(guān)方程的知識進行梳理,構(gòu)建網(wǎng)絡(luò)。并解決實際問題。
本節(jié)課的教學目標是結(jié)合具體情境,了解方程的含義以及會用方程表示簡單情境中的等量關(guān)系。在教學的過程中,我設(shè)計導(dǎo)學案,先課件出示幾個情境圖,讓學生從生活中的蹺蹺板引入,看清情境圖。讓孩子們從中找出數(shù)學信息,從而找到等量關(guān)系,讓孩子用自己的語言進行描述,嘗試著列出方程。知道了什么是等式,接著在交流書本的三個情境圖,逐漸加大難度。多請幾位孩子說說他們找到的等量關(guān)系。嘗試列出等式。然后觀察列出交流,從而知道含有未知數(shù)的等式叫方程。做練習進行鞏固如何找等量關(guān)系,從而列出方程。本節(jié)課,我力求讓學生通過自主探索,利用生活的例子,讓每個學生都有觀察、作分析、思考的機會,提供給學生一個廣泛的,自由的`活動空間,讓學生大膽嘗試,探索,感受數(shù)學的趣味。學生也都表現(xiàn)得比較積極,通過同桌交流等形式,找出等量關(guān)系,列方程時,同學們用不同的方式列出了式子,有些學生可能還受到舊知識的影響,把要求的未知數(shù)單獨放在了等式一邊,當時我雖然告訴孩子們方程不能這樣列,但從某些后進生做的練習來看要轉(zhuǎn)變過來還是有些困難,我想,可能是我沒能把書本第一個出現(xiàn)天平的情境圖講的還不夠透徹,不能真正掌握找出等量關(guān)系的方法。整堂課當中,感覺對后進生的關(guān)注度不夠,如果多加關(guān)注,可能可以找出錯誤資源,然后教師再加以引導(dǎo),讓同學們能更好的快速找出等量關(guān)系,更快的列出方程。最后,對自己比較不滿意的是:
1、學生說的問題與我設(shè)想的有出入。
2、學生展示的時候不大膽。流程走完了,留給學生的空間太少了。
想讓學生有個輕松愉悅的學習氛圍,但可能我還需要一些時間,希望以后能上出讓學生輕松愉悅的數(shù)學課。
解方程教學反思 15
有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導(dǎo)學生會解形如a-x=b及a÷x=b方程。
本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補充講解,且屬于學生必會、考試必考內(nèi)容。原因如下:
1、在列方程解決實際問題時,學生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。
2、如果教師有意回避,會使學生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。
基于上述原因,我今天在教學完例2后為學生補充了相應(yīng)內(nèi)容,但教學效果較差。雖然許多學生能根據(jù)加減乘除各部分之間的關(guān)系推導(dǎo)出X的值,但當要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導(dǎo),全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的'原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應(yīng)根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復(fù)雜。
值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關(guān)系教好呢,還是按等式的性質(zhì)教學好呢?
【解方程教學反思】相關(guān)文章:
解方程教學反思02-05
解方程的教學反思02-26
《解方程》教學反思03-28
《解方程》的教學反思09-17
數(shù)學解方程教學反思03-28
《解方程(二)》教學反思04-07
《解方程二》教學反思04-07
解方程二教學反思12-29
《解方程》教學反思 15篇04-07
《解方程》教學反思 (15篇)04-07