丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教學(xué)論文>教學(xué)計(jì)劃>數(shù)學(xué)教學(xué)計(jì)劃

數(shù)學(xué)教學(xué)計(jì)劃

時(shí)間:2023-02-27 12:27:00 教學(xué)計(jì)劃 我要投稿

數(shù)學(xué)集合教學(xué)計(jì)劃

  人生天地之間,若白駒過隙,忽然而已,我們又將迎來新的喜悅、新的收獲,請(qǐng)一起努力,寫一份計(jì)劃吧。想學(xué)習(xí)擬定計(jì)劃卻不知道該請(qǐng)教誰?以下是小編幫大家整理的數(shù)學(xué)集合教學(xué)計(jì)劃,希望對(duì)大家有所幫助。

數(shù)學(xué)集合教學(xué)計(jì)劃

數(shù)學(xué)集合教學(xué)計(jì)劃1

  一、指導(dǎo)思想

  使學(xué)生學(xué)好從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力,以逐步形成運(yùn)用數(shù)學(xué)知識(shí)來分析和解決實(shí)際問題的能力。要培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣,激勵(lì)學(xué)生為實(shí)現(xiàn)四個(gè)現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點(diǎn)。

  二、基本情況分析

  1、4班共人,男生人,女生人。本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,差生約人。

  5班共人,男生人,女生人。本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,差生約人。

  2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績(jī)?cè)?00’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分為,最低分為。

  5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績(jī)?cè)?00’及以上的有人,80’—99’有人,60’—79’有人,40’—59’有人,40’以下有人,其中最高分為,最低分為。

  3、4/5班分別為高一年級(jí)9個(gè)班中編排一個(gè)普高班和一個(gè)普高班之后的體育班,整體分析的結(jié)果是

  三、教材分析

  1、教材內(nèi)容集合、一元二次不等式、簡(jiǎn)易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。

  2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一。函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一。數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。

  3、教材重點(diǎn)幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和的公式。

  4、教材難點(diǎn)關(guān)于集合的各個(gè)基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、

  5、教材關(guān)鍵理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。

  6、采用了由淺入深、減緩坡度、分散難點(diǎn),逐步展開教材內(nèi)容的做法,符合從有限到無限的認(rèn)識(shí)規(guī)律,體現(xiàn)了從量變到質(zhì)變和對(duì)立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對(duì)獨(dú)立,方法比較單一,有助于掌握每一階段內(nèi)容。

  7、各部分知識(shí)之間的聯(lián)系較強(qiáng),每一階段的知識(shí)都是以前一階段為基礎(chǔ),同時(shí)為下階段的學(xué)習(xí)作準(zhǔn)備。

  8、全期教材重要的內(nèi)容是集合運(yùn)算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項(xiàng)和前n項(xiàng)和。

  四、教學(xué)要求

  1、理解集合、子集、交集、并集、補(bǔ)集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號(hào),能正確地表示一些簡(jiǎn)單的集合。

  2、掌握一元二次不等式的.解法和絕對(duì)值不等式的解法,并能熟練求解。

  3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。

  4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。

  5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡(jiǎn)單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對(duì)稱性的關(guān)系描繪圖象。

  6、掌握指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的概念及其圖象和性質(zhì),并會(huì)解簡(jiǎn)單的函數(shù)應(yīng)用問題。

  7、使學(xué)生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和的公式,并能夠運(yùn)用這些知識(shí)解決一些問題。

  五、教學(xué)措施

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

  2、注意從實(shí)例出發(fā),從感性提高到理性。注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念。注意結(jié)合直觀圖形,說明抽象的知識(shí)。注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

  3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系。加強(qiáng)復(fù)習(xí)檢查工作。抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。

  六、教學(xué)進(jìn)度安排

  九月份集合(2)、子集、全集、補(bǔ)集(2)、交集、并集(2)、集合習(xí)題(1)

  邏輯聯(lián)結(jié)詞(1)、四種命題(1)、充要條件(1)、習(xí)題(1)、

  十月份映射(1)、函數(shù)(2)、單調(diào)性奇偶性(3)、反函數(shù)(2)、習(xí)題(1)

  指數(shù)(1)、指數(shù)函數(shù)(3)、對(duì)數(shù)(2)、對(duì)數(shù)函數(shù)(3)、習(xí)題(1)

  十一月份期中復(fù)習(xí)與考試(8)、數(shù)列(2)、

  等比數(shù)列(2)、等比數(shù)列的前n項(xiàng)和(2)、

  附高一數(shù)學(xué)教學(xué)的幾點(diǎn)具體措施

  1、作業(yè)方面

  ①課堂作業(yè)設(shè)置一本。提倡用鋼筆書寫,一律要求用鉛筆、尺規(guī)作圖,書寫規(guī)范。墨跡、錯(cuò)誤用橡皮擦擦干凈,保持作業(yè)本整潔。當(dāng)天布置,當(dāng)天第二節(jié)晚自習(xí)之前交(若無晚自習(xí),則第二天早讀之前交)。批閱用“?”號(hào)代表錯(cuò)誤,一般點(diǎn)在錯(cuò)誤開始處,自覺完成更正。

  ②每次作業(yè)按a、b、c、d四個(gè)等級(jí)評(píng)定,分別得分5、4、3、2,每本作業(yè)本完成后自行統(tǒng)計(jì)得分并上交科代表審核、教師評(píng)定等級(jí),得分90%~98%為優(yōu)良等級(jí),98%及以上為優(yōu)秀等級(jí)。(來源:)

  ③《同步優(yōu)化設(shè)計(jì)》及時(shí)完成,按進(jìn)度交閱,自覺訂正。

  2、考試方面

  ①控制考試次數(shù),一般為月考2次,期中期末統(tǒng)考各1次,期末復(fù)習(xí)小考2次。

 、谥坪迷嚲,切合實(shí)際,難易適中,目標(biāo)高考。

 、劢M織好考試,嚴(yán)格考試紀(jì)律。

  3、興趣方面

  ①組織一次活動(dòng)、一次競(jìng)賽。

 、诙嗌弦恍┒嗝襟w課、優(yōu)質(zhì)課。

 、勖?jī)芍馨才乓还?jié)課時(shí),由課代表組織4個(gè)學(xué)生講課,每人10分鐘左右,主要講解《同步優(yōu)化設(shè)計(jì)》上的難題。

  4、成績(jī)總評(píng)

 、倜科诳傇u(píng)成績(jī)150分,分為三大項(xiàng),分值為考試成績(jī)125分(2次月考各5’、期中15’、期末100’)、平時(shí)成績(jī)24分(作業(yè)10’、練習(xí)8’、2次小考各3’)、自評(píng)1分。

 、谔岢珳(zhǔn)備筆記本、考試錯(cuò)題更正本,并檢查后給予加分5’、2’,其它特別表現(xiàn)給予加分3’。

  5、抓好學(xué)習(xí)常規(guī),提高學(xué)習(xí)成績(jī)。

數(shù)學(xué)集合教學(xué)計(jì)劃2

  一.教學(xué)目標(biāo)

  1. 知識(shí)與技能

  (1)通過實(shí)例了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,體會(huì)用集合語言表達(dá)數(shù)學(xué)內(nèi)容的簡(jiǎn)潔性、準(zhǔn)確性,學(xué)會(huì)用集合語言表示有關(guān)的數(shù)學(xué)對(duì)象;

  (2)初步了解有限集、無限集的意義;

  (3)掌握常用數(shù)集及集合表示的符號(hào),能用集合語言(集合的表示符號(hào))描述一些具體的數(shù)學(xué)問題,感受集合語言的作用。

  2.過程與方法

  (1)通過學(xué)習(xí)集合的含義,從中體會(huì)集合中蘊(yùn)涵的分類思想;

  (2)通過對(duì)集合表示法的學(xué)習(xí),認(rèn)識(shí)到列舉法與描述法不同的適用范圍。

  3.情感、態(tài)度與價(jià)值觀

  通過集合的教學(xué),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的學(xué)習(xí)態(tài)度,體會(huì)數(shù)學(xué)學(xué)習(xí)的意義。

  二.教材分析

  集合語言是現(xiàn)代數(shù)學(xué)的基本語言,使用集合語言可以簡(jiǎn)潔、準(zhǔn)確地表達(dá)數(shù)學(xué)的一些內(nèi)容。課本從生活實(shí)際出發(fā),通過對(duì)我國(guó)湖泊分類,讓學(xué)生初步感受集合的.概念,再?gòu)膶W(xué)生熟悉的集合(自然數(shù)集合、有理數(shù)集合等)出發(fā),進(jìn)一步理解集合的含義,符合學(xué)生的認(rèn)知規(guī)律。

  三.重點(diǎn)和難點(diǎn)

 、.本節(jié)的重點(diǎn):集合的基本概念與表示方法。

  ②.本節(jié)的難點(diǎn):運(yùn)用集合的兩種常用的表示方法--------列舉法與描述法,正確表示一些簡(jiǎn)單的集合。

  四.學(xué)法指導(dǎo)

  由于集合的概念較難理解,因此建議采用漸進(jìn)式學(xué)習(xí)。

  五.教學(xué)過程

  (一)情景導(dǎo)入:

  大家剛剛軍訓(xùn),經(jīng)常聽到的一句話是“x營(yíng)x連集合”,顯然,這里的集合是動(dòng)詞,含義為把某些特定對(duì)象集中起來.數(shù)學(xué)里,集合變?yōu)槊~,某些特定對(duì)象的全體叫集合.

  (二)新課講授:

  1、集合:某些特定對(duì)象的全體.通常用大寫英文字母來標(biāo)記,比如A、B ‥‥

  2、元素:集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.通常用小寫字母a、b ‥‥ x、y … b標(biāo)記;

  3、元素與集合的關(guān)系:如果a是集合A的元素,就說a屬于A,記作a∈A; 如果a不是集合A的元素,就說a不屬于A,記作

  4、集合的表示:

 、.列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi)表示集合的方法.

  例如,由方程x2-1=0的所有解組成的集合,表示為{-1,1}.

  這里的大括號(hào)表示“全體”、 “都”的意思.

  再如,四大洋表示的集合:{太平洋,大西洋,印度洋,北冰洋}.

 、.描述法:(對(duì)于某些集合用列舉法就不方便了,比如:X-3>0的解集)

  { X | X >3 } ——— 分析描述法的結(jié)構(gòu)

  ↓ ↓

  元素 屬性

  象這種用集合所含元素的共同屬性表示集合的方法.

  舉例: {y|y=2 x2,x∈R} ; {x|y=2x2};{(x ,y)| y=2 x2,x∈R}.

  注:在不致混淆的情況下,可以省去豎線及左邊部分,如 {x|x是直角三角形},可以表示為 {直角三角形}.

 、.韋恩圖:用一條封閉的曲線的內(nèi)部來表示集合的方法.

  比較各種表示法的優(yōu)、缺點(diǎn):

  列舉法:元素個(gè)數(shù)較少時(shí);

  描述法:共同屬性明確;

  韋恩圖:形象直觀.

  5、集合中元素的特性通過上述表示方法,可以發(fā)現(xiàn)集合中元素的特性:

  確定性、互異性、無序性.

  6、集合的分類: 有限集、無限集、空集.

  7、常見數(shù)集的記法:

  (1).自然數(shù)集,記作 N ;

  (2).正整數(shù)集,記作 N*或者N+;

  (3).整數(shù)集, 記作Z;

  (4).有理數(shù)集,記作Q;

  (5).實(shí)數(shù)集, 記作R.

  (三)知識(shí)運(yùn)用:

  例1、下面表示是否正確?

  (1).Z={全體整數(shù)} (2).{(1,2)}與{1,2}是同一個(gè)集合

  (3).{0}= (4). x2-2x+3=0的解集為{1}

  例2、已知:A={x|x= n2+1,n∈Z},a= k2-4k+5,k∈Z

  試判斷a的集合與A的關(guān)系.

  解: a= k2-4k+5=(k-2)2+1 ,且k-2∈Z

  ∴ a∈A

  例3、已知集合A={x∈R|mx2-2x+3=0,m∈R},若A中的元素至多只有一個(gè),求m的取值范圍.

  (四)課堂小結(jié):

  (1).集合的表示方法有哪些?

  (2).集合中的元素有何性質(zhì)?

  (五)課后作業(yè):

  習(xí)題1—1 A組 4、5 B組 1、2

數(shù)學(xué)集合教學(xué)計(jì)劃3

  教學(xué)分析

  課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實(shí)數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時(shí),結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時(shí),課本注重體現(xiàn)邏輯思考的方法,如類比等.

  值得注意的問題:在集合間的關(guān)系教學(xué)中,建議重視使用Venn圖,這有助于學(xué)生通過體會(huì)直觀圖示來理解抽象概念;隨著學(xué)習(xí)的深入,集合符號(hào)越來越多,建議教學(xué)時(shí)引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號(hào),例如∈與?的區(qū)別.

  三維目標(biāo)

  1.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.

  2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達(dá)集合的關(guān)系,加強(qiáng)學(xué)生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.

  重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn):理解集合間包含與相等的含義.

  教學(xué)難點(diǎn):理解空集的含義.

  課時(shí)安排

  1課時(shí)

  教學(xué)過程

  導(dǎo)入新課

  思路1.實(shí)數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實(shí)數(shù)之間的關(guān)系,你會(huì)想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)

  活動(dòng):學(xué)生先思考集合中元素的特征,明確集合中的元素.將集合中元素利用數(shù)形結(jié)合在數(shù)軸上找到,那么運(yùn)算結(jié)果尋求就易進(jìn)行.這三個(gè)集合都是用描述法表示的數(shù)集,求集合的并集和交集的關(guān)鍵是找出它們的公共元素和所有元素.

  解:因?yàn)锳={x|x<5 b="{x|x">0},C={x|x≥10},在數(shù)軸上表示,如圖3所示,所以A∩B={x|00},A∩B∩C= .

  變式訓(xùn)練

  1.設(shè)集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.

  解:對(duì)任意m∈A,則有m=2n=2?2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即對(duì)任意m∈A有m∈B,所以A?B.

  而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.

  2.求滿足{1,2}∪B={1,2,3}的集合B的個(gè)數(shù).

  解:滿足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};還可含1或2其中一個(gè),有{1,3},{2,3};還可含1和2,即{1,2,3},那么共有4個(gè)滿足條件的集合B.

  3.設(shè)集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.

  解:∵A∩B={9},則9∈A,a-1=9或a2=9.

  ∴a=10或a=±3.

  當(dāng)a=10時(shí),a-5=5 ,1-a=-9;

  當(dāng)a=3時(shí),a-1=2不合題意;

  當(dāng)a=-3時(shí),a-1=-4不合題意.

  故a=10.此時(shí)A={-4,2,9,100},B={9,5,-9},滿足A∩B={9}.

  4.設(shè)集合A={x|2x+1<3},B={x|-3

  A.{x|-3

  C.{x|x>-3} D.{x|x<1}

  解析:集合A={x|2x+1<3}={x|x<1},

  觀察或由數(shù)軸得A∩B={x|-3

  答案:A

  例2 設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.

  活動(dòng):明確集合A,B中的元素,教師和學(xué)生共同探討滿足A∩B=B的集合A,B的關(guān)系.集 合A是方程x2+4x=0的解組成的集合,可以發(fā)現(xiàn),B?A,通過分類討論集合B是否為空集來求a的值.利用集合的表示 法來認(rèn)識(shí)集合A,B均是方程的解集,通過畫Venn圖發(fā)現(xiàn)集合A,B的關(guān)系,從數(shù)軸上分析求得a的值.

  解:由題意得A={-4,0}.

  ∵A∩B=B,∴B?A.

  ∴B= 或B≠ .

  當(dāng)B= 時(shí),即關(guān)于x的方程x2+2(a+1)x+a2-1=0無實(shí)數(shù)解,

  則Δ=4(a+1)2-4(a2-1)<0,解得a<-1.

  當(dāng)B≠ 時(shí),若集合B僅含有一個(gè)元素,則Δ=4(a+1)2-4(a2-1)=0,解得a=-1,

  此時(shí),B={x|x2=0}={0}?A,即a=-1符合題意.

  若集合B含有兩個(gè)元素,則這兩個(gè)元素是-4,0,

  即關(guān)于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.

  則有-4+0=-2(a+1),-4×0=a2-1.

  解得a=1,則a=1符合題意.

  綜上所得,a=1或a≤-1.

【數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:

數(shù)學(xué)教學(xué)計(jì)劃06-15

數(shù)學(xué)教學(xué)計(jì)劃11-08

數(shù)學(xué)的教學(xué)計(jì)劃04-26

數(shù)學(xué)教學(xué)計(jì)劃范文04-29

數(shù)學(xué)初步教學(xué)計(jì)劃08-29

數(shù)學(xué)教育教學(xué)計(jì)劃08-29

實(shí)用數(shù)學(xué)教學(xué)計(jì)劃08-31

數(shù)學(xué)教學(xué)計(jì)劃【熱門】09-14

【薦】數(shù)學(xué)教學(xué)計(jì)劃09-25

【精】數(shù)學(xué)教學(xué)計(jì)劃09-25