高一數(shù)學(xué)教學(xué)計(jì)劃【推薦】
時(shí)間過得太快,讓人猝不及防,又迎來了一個(gè)全新的起點(diǎn),是時(shí)候開始制定計(jì)劃了。計(jì)劃到底怎么擬定才合適呢?下面是小編為大家整理的高一數(shù)學(xué)教學(xué)計(jì)劃,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)教學(xué)計(jì)劃1
指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現(xiàn)代化和教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計(jì)的初步知識,計(jì)算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
學(xué)情分析及相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的.生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn).所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。.
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
教學(xué)進(jìn)度安排:
周 次 時(shí) 內(nèi) 容 重 點(diǎn)、難 點(diǎn)
第1周
9.2~9.6 5 集合的含義與表示、
集合間的基本關(guān)系、
會求兩個(gè)簡單集合的并集與交集;會求給定子集的補(bǔ)集;。難點(diǎn):理解概念
第2周
9.7~9.13 5 集合的基本運(yùn)算
函數(shù)的概念、
函數(shù)的表示法 能使用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,會求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用
第3周
9.14~9.20 5 單調(diào)性與最值、
奇偶性、實(shí)習(xí)、小結(jié) 學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義
第4周
9.21~9.27 5 指數(shù)與指數(shù)冪的運(yùn)算、
指數(shù)函數(shù)及其性質(zhì) 掌握冪的運(yùn)算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。難點(diǎn):理解概念
第5周
9.28~10.4 5 (9月月考?、國慶放假)
第6周
10.5~10.11 5 對數(shù)與對數(shù)運(yùn)算、
對數(shù)函數(shù)及其性質(zhì) 理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式;探索并了解對數(shù)函數(shù)單調(diào)性與特殊點(diǎn);知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
第7周
10.12~10.18 5 冪函數(shù) 從五個(gè)具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認(rèn)識冪函數(shù)的一些性質(zhì)
第8周
10.19~10.25 5 方程的根與函數(shù)零點(diǎn),
二分法求方程近似解, 能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;
第9周
10.26~11.1 5 幾類不同增長的模型、函數(shù)模型應(yīng)用舉例 對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義
第10周
11.2~11.8 期中復(fù)習(xí)及考試 分章歸納復(fù)習(xí)+1套模擬測試
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函數(shù) 了解任意角的概念和弧度制,能進(jìn)行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16~11.22 5 三角函數(shù)的誘導(dǎo)公式
三角函數(shù)的圖像和性質(zhì) 借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23~11.29 5 函數(shù)y=Asin(wx+q)的圖像 借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì),借助計(jì)算機(jī)畫出圖像觀察A w q對函數(shù)圖像變化的影響
第14周
11.30~12.6 5 三角函數(shù)模型的簡單應(yīng)用 單元考試 會用三角函數(shù)解決一些簡單實(shí)際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7~12.13 5 平面向量的實(shí)際背景及基本概念,平面向量的線性運(yùn)算 掌握向量加、減法的運(yùn)算,理解其幾何意義掌握數(shù)乘運(yùn)算及兩個(gè)向量共線的含義了解平面向量的基本定理掌握正交分解及坐標(biāo)表示、會用坐標(biāo)表示平面向量的加減及數(shù)乘運(yùn)算
第16周
12.14~12.20 5 平面向量的基本定理及坐標(biāo)表示,平面向量的數(shù)量積, 理解用坐標(biāo)表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面,向量數(shù)量積的運(yùn)算、求夾角、及垂直關(guān)系
第17周
12.21~12.27 5 平面向量應(yīng)用舉例,
小結(jié) 用向量方法解決莫些簡單的平面幾何問題、力學(xué)問題與其他一些實(shí)際問題的過程,體會向量是一種幾何問題,物理問題的工具,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力
第18周
12.28~1.3 5 兩角和與差點(diǎn)正弦、余弦和正切公式 能以兩角差點(diǎn)余弦公式導(dǎo)出兩角和與差點(diǎn)正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系
第19周
1.4~1.10 5 簡單的三角恒等變換
期末復(fù)習(xí)
高一數(shù)學(xué)教學(xué)計(jì)劃2
教學(xué)目標(biāo) :
(1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;
(2)了解全集、空集的意義,
(3)掌握有關(guān)的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學(xué)生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補(bǔ)集;
(5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準(zhǔn)確地表示出來,培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;
(6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問題、解決問題的能力.
教學(xué)重點(diǎn):子集、補(bǔ)集的概念
教學(xué)難點(diǎn) :弄清元素與子集、屬于與包含之間的區(qū)別
教學(xué)用具:幻燈機(jī)
教學(xué)過程 設(shè)計(jì)
(一)導(dǎo)入 新課
上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識.
【提出問題】(投影打出)
已知 , , ,問:
1.哪些集合表示方法是列舉法.
2.哪些集合表示方法是描述法.
3.將集M、集從集P用圖示法表示.
4.分別說出各集合中的元素.
5.將每個(gè)集合中的元素與該集合的關(guān)系用符號表示出來.將集N中元素3與集M的'關(guān)系用符號表示出來.
6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.
【找學(xué)生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(筆練結(jié)合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (筆練結(jié)合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問題.
(二)新授知識
1.子集
(1)子集定義:一般地,對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作: 讀作:A包含于B或B包含A
當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:A B或B A.
性質(zhì):① (任何一個(gè)集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.
因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的.空集也是B的子集,而這個(gè)集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.
(2)集合相等:一般地,對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例: ,可見,集合 ,是指A、B的所有元素完全相同.
(3)真子集:對于兩個(gè)集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B.
【提問】
(1) 寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。
(2) 判斷下列寫法是否正確
、 A ② A ③ ④A A
性質(zhì):
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;
(2)如果 , ,則 .
例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集與真子集符號的方向。
(2)易混符號
、佟 ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}
、趝0}與 :{0}是含有一個(gè)元素0的集合, 是不含任何元素的集合。
如: {0}。不能寫成 ={0}, ∈{0}
例2 見教材P8(解略)
例3 判斷下列說法是否正確,如果不正確,請加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 與 不能同時(shí)成立.
解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確.空集是任何非空集合的真子集;
(3)不正確. 與 表示同一集合;
(4)不正確. 的所有子集是 ;
(5)正確
(6)不正確.當(dāng) 時(shí), 與 能同時(shí)成立.
例4 用適當(dāng)?shù)姆? , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)設(shè) , , ,則A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.
【練習(xí)】教材P9
用適當(dāng)?shù)姆? , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提問:見教材P9例子
(二) 全集與補(bǔ)集
1.補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作 ,即
.
A在S中的補(bǔ)集 可用右圖中陰影部分表示.
性質(zhì): S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};
(2)若A={0},則 NA=N*;
(3) RQ是無理數(shù)集。
2.全集:
如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用表示.
注: 是對于給定的全集 而言的,當(dāng)全集不同時(shí),補(bǔ)集也會不同.
例如:若 ,當(dāng) 時(shí), ;當(dāng) 時(shí),則 .
例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.
高一數(shù)學(xué)教學(xué)計(jì)劃3
一、指導(dǎo)思想:
遵循“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想,使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會提高的需要。
二、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可理解性等,具有如下特點(diǎn):
1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)活力。
2、“問題性”:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3、“科學(xué)性”與“思想性”:經(jīng)過不一樣數(shù)學(xué)資料的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比、化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維本事,培育理性精神。
4、“時(shí)代性”與“應(yīng)用性”:以具有時(shí)代感和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
三、教法分析:
1、選取與資料密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動,以到達(dá)培養(yǎng)其興趣的目的。
2、經(jīng)過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改善學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長。應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實(shí)際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的`學(xué)習(xí)方法。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實(shí)際問題的本事,提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
5、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。
高一數(shù)學(xué)教學(xué)計(jì)劃4
一、教材資料分析
函數(shù)是高中數(shù)學(xué)的重要資料,函數(shù)的表示法是“函數(shù)及其表示”這一節(jié)的主要資料之一。學(xué)習(xí)函數(shù)的表示法,不僅僅是研究函數(shù)本身和應(yīng)用函數(shù)解決實(shí)際問題所必須涉及的問題,也是加深對函數(shù)概念理解所必須的。同時(shí),基于高中階段所接觸的許多函數(shù)均可用幾種不一樣的方式表示,因而學(xué)習(xí)函數(shù)的表示也是領(lǐng)悟數(shù)學(xué)思想方法(如數(shù)形結(jié)合、化歸等)、學(xué)會根據(jù)問題需要選擇表示方法的重要過程。
學(xué)生在學(xué)習(xí)用集合與對應(yīng)的語言刻畫函數(shù)之前,比較習(xí)慣于用解析式表示函數(shù),但這是對函數(shù)很不全面的認(rèn)識。在本節(jié)中,從引進(jìn)函數(shù)概念開始,就比較注重函數(shù)的不一樣表示方法:解析法、圖象法、列表法。函數(shù)的不一樣表示法能豐富對函數(shù)的認(rèn)識,幫忙理解抽象的函數(shù)概念。異常是在信息技術(shù)環(huán)境下,能夠使函數(shù)在數(shù)形結(jié)合上得到更充分的表現(xiàn),使學(xué)生更好地體會這一重要的數(shù)學(xué)思想方法。所以,在研究函數(shù)時(shí),應(yīng)充分發(fā)揮圖象直觀的作用;在研究圖象時(shí)要注意代數(shù)刻畫,以求思考和表述的精確性。
二、教學(xué)目標(biāo)分析
根據(jù)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(實(shí)驗(yàn))和新課改的理念,我從知識、本事和情感三個(gè)方面制訂教學(xué)目標(biāo)。
1、明確函數(shù)的三種表示方法(圖象法、列表法、解析法),經(jīng)過具體的實(shí)例,了解簡單的分段函數(shù)及其應(yīng)用。
2、經(jīng)過解決實(shí)際問題的過程,在實(shí)際情境中能根據(jù)不一樣的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),發(fā)展學(xué)生思維本事。
3、經(jīng)過一些實(shí)際生活應(yīng)用,讓學(xué)生感受到學(xué)習(xí)函數(shù)表示的必要性;經(jīng)過函數(shù)的解析式與圖象的結(jié)合滲透數(shù)形結(jié)合思想。
三、教學(xué)問題診斷分析
。1)初中已經(jīng)接觸過函數(shù)的三種表示法:解析法、列表法和圖象法、高中階段重點(diǎn)是讓學(xué)生在了解三種表示法各自優(yōu)點(diǎn)的基礎(chǔ)上,使學(xué)生會根據(jù)實(shí)際情境的需要選擇恰當(dāng)?shù)谋硎痉椒āK,教學(xué)中應(yīng)當(dāng)多給出一些具體問題,讓學(xué)生在比較、選擇函數(shù)模型表示方式的過程中,加深對函數(shù)概念的整體理解,而不再誤以為函數(shù)都是能夠?qū)懗鼋馕鍪降摹?/p>
。2)分段函數(shù)很多存在,但比較繁瑣。一方面,要加強(qiáng)用分段函數(shù)模型刻畫實(shí)際問題的實(shí)踐,另一方面,還能夠經(jīng)過動畫模擬,讓學(xué)生體驗(yàn)到,分段函數(shù)的問題應(yīng)當(dāng)分段解決,然后再綜合。這也為下一步研究分段函數(shù)的單調(diào)性等性質(zhì)打下伏筆。
四、本節(jié)課的教法特點(diǎn)以及預(yù)期效果分析
。ㄒ唬、本節(jié)課的教法特點(diǎn)
根據(jù)教學(xué)資料,結(jié)合學(xué)生的具體情景,我采用了學(xué)生自主探究和教師啟發(fā)引導(dǎo)相結(jié)合的教學(xué)方式。在整個(gè)的教學(xué)過程中讓學(xué)生盡可能地動手、動腦,調(diào)動學(xué)生進(jìn)取性,充分地參與學(xué)習(xí)的全過程。倡導(dǎo)學(xué)生主動參與、樂于探究、勤于動手,逐步培養(yǎng)學(xué)生能夠利用函數(shù)來處理信息的本事。
(二)、本節(jié)課預(yù)期效果
1、經(jīng)過具體的實(shí)例,讓學(xué)生體會函數(shù)三種表示法的優(yōu)、缺點(diǎn)。
創(chuàng)造問題情景這種情景的創(chuàng)設(shè)以具體事例出發(fā),印象深刻。所以在引入時(shí)先從函數(shù)的三要素入手,強(qiáng)調(diào)要素之一對應(yīng)關(guān)系,然后給出三個(gè)具體實(shí)例:
。1)炮彈發(fā)射時(shí),距離地面的高度隨時(shí)間變化的情景;
。2)用圖表的形式給出臭氧層空洞的面積與時(shí)間的關(guān)系;
(3)恩格爾系數(shù)的變化情景。
指出每種對應(yīng)分別以怎樣的形式展現(xiàn)。引出函數(shù)的表示方法這一課題。因?yàn)槲覀冞@節(jié)課的重點(diǎn)是讓學(xué)生在實(shí)際情景中,會根據(jù)不一樣的需要選擇恰當(dāng)?shù)谋硎痉椒。會選擇的前提是理解,這些完全靠學(xué)生的現(xiàn)實(shí)經(jīng)驗(yàn),讓學(xué)生自我去發(fā)現(xiàn)各自的優(yōu)劣。這為第一道例題打下基礎(chǔ)。
例1經(jīng)過具體例子,讓學(xué)生用三種不一樣的表示方法來表示的同一個(gè)函數(shù),進(jìn)一步理解函數(shù)概念。把問題交給學(xué)生,學(xué)生獨(dú)立完成,并自我檢查發(fā)現(xiàn)問題,加深學(xué)生對三種表示法的深刻理解。學(xué)生思考函數(shù)表示法的規(guī)定。注意本例的設(shè)問,此處“”有三種含義,它能夠是解析表達(dá)式,能夠是圖象,也能夠是對應(yīng)值表。
由于這個(gè)函數(shù)的圖象由一些離散的點(diǎn)組成,與以前學(xué)習(xí)過的一次函數(shù)、二次函數(shù)的圖象是連續(xù)的曲線不一樣。經(jīng)過本例,進(jìn)一步讓學(xué)生感受到,函數(shù)概念中的對應(yīng)關(guān)系、定義域、值域是一個(gè)整體、函數(shù)y=5x不一樣于函數(shù)y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續(xù)的`)直線,而后者是5個(gè)離散的點(diǎn)。由此認(rèn)識到:“函數(shù)圖象既能夠是連續(xù)的曲線,也能夠是直線、折線、離散的點(diǎn),等等。”并明確:如何確定一個(gè)圖形是否是函數(shù)圖象方法
2、讓學(xué)生會根據(jù)不一樣的實(shí)例選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù)
例2用表格法表示了函數(shù)。要“對這三位運(yùn)動員的成績做一個(gè)分析”不太方便,所以需要改變函數(shù)表示的方法,選擇圖象法比較恰當(dāng)。教學(xué)中,先不必直接把圖象法告訴學(xué)生,能夠讓學(xué)生說說自我是如何分析的,選擇了什么樣的方法來表示這三個(gè)函數(shù)、經(jīng)過比較各種不一樣的表示方法,達(dá)成共識:用圖象法比較好。培養(yǎng)學(xué)生根據(jù)實(shí)際需要選擇恰當(dāng)?shù)暮瘮?shù)表示法的本事。
學(xué)生經(jīng)過觀察、思考獲得結(jié)論、比如總體水平(朱啟南成績好)、變化趨勢(劉天佑的成績在逐步提高)、與運(yùn)動員的平均分的比較,等等。培養(yǎng)學(xué)生的觀察本事、獲取有用信息的本事。同時(shí)要求學(xué)生注意圖中的虛線不是函數(shù)圖象的組成部分,之所以用虛線連接散點(diǎn),主要是為了區(qū)分這三個(gè)函數(shù),直觀感受三個(gè)函數(shù)的圖象具有整體性,也便于分析成績情景,加以比較。
3、經(jīng)過具體的實(shí)例,了解分段函數(shù)及其表示
生活中有很多能夠用分段函數(shù)描述的實(shí)際問題,如出租車的計(jì)費(fèi)、個(gè)人所得稅納稅稅額等等。經(jīng)過例3的教學(xué),讓學(xué)生了解分段函數(shù)及其表示。為了便于學(xué)生理解,給出了實(shí)際情景的模擬。能夠使函數(shù)在數(shù)與形兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生經(jīng)過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合的數(shù)學(xué)思想方法。
高一數(shù)學(xué)教學(xué)計(jì)劃5
一、學(xué)生狀況分析
學(xué)生整體水平一般,成績以中等為主,中上不多,后進(jìn)生也有一些。幾個(gè)班中,從上課一周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》,教材在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可理解性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點(diǎn)線平面間的位置關(guān)系;直線與方程;圓與方程)。
三、教學(xué)任務(wù)
本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。
2、提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
3、提高學(xué)生提出、分析和解決問題(包括簡單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要資料,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
教學(xué)方法及推進(jìn)措施
六、相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的.適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實(shí)際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
。2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識與重點(diǎn)資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
。3)培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
。4)讓學(xué)生經(jīng)過單元考試,檢測自我的實(shí)際應(yīng)用本事,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
。5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
。6)重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。
。7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
(8)合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
。9)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實(shí)際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
。10)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
。11)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。
七、教學(xué)進(jìn)度安排:
(略)
高一數(shù)學(xué)教學(xué)計(jì)劃6
一、學(xué)情分析
這節(jié)課是在學(xué)生已經(jīng)學(xué)過的二維的平面直角坐標(biāo)系的基礎(chǔ)上的推廣,是以后學(xué)習(xí)空間向量等內(nèi)容的基礎(chǔ)。
二、教學(xué)目標(biāo)
1. 讓學(xué)生經(jīng)歷用類比的數(shù)學(xué)思想方法探索空間直角坐標(biāo)系的建立方法,進(jìn)一步體會數(shù)學(xué)概念、方法產(chǎn)生和發(fā)展的過程,學(xué)會科學(xué)的思維方法。
2. 理解空間直角坐標(biāo)系與點(diǎn)的坐標(biāo)的意義,掌握由空間直角坐標(biāo)系內(nèi)的點(diǎn)確定其坐標(biāo)或由坐標(biāo)確定其在空間直角坐標(biāo)系內(nèi)的點(diǎn),認(rèn)識空間直角坐標(biāo)系中的點(diǎn)與坐標(biāo)的關(guān)系。
3. 進(jìn)一步培養(yǎng)學(xué)生的空間想象能力與確定性思維能力。
三、教學(xué)重點(diǎn):在空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)的確定。
四、教學(xué)難點(diǎn):通過建立空間直角坐標(biāo)系利用點(diǎn)的坐標(biāo)來確定點(diǎn)在空間內(nèi)的位置
五、教學(xué)過程
(一)、問題情景
1. 確定一個(gè)點(diǎn)在一條直線上的位置的方法。
2. 確定一個(gè)點(diǎn)在一個(gè)平面內(nèi)的位置的方法。
3. 如何確定一個(gè)點(diǎn)在三維空間內(nèi)的位置?
例:如圖,在房間(立體空間)內(nèi)如何確定一個(gè)同學(xué)的頭所在位置?
在學(xué)生思考討論的基礎(chǔ)上,教師明確:確定點(diǎn)在直線上,通過數(shù)軸需要一個(gè)數(shù);確定點(diǎn)在平面內(nèi),通過平面直角坐標(biāo)系需要兩個(gè)數(shù)。那么,要確定點(diǎn)在空間內(nèi),應(yīng)該需要幾個(gè)數(shù)呢?通過類比聯(lián)想,容易知道需要三個(gè)數(shù)。要確定同學(xué)的頭的位置,知道同學(xué)的頭到地面的距離、到相鄰的兩個(gè)墻面的距離即可。
(此時(shí)學(xué)生只是意識到需要三個(gè)數(shù),還不能從坐標(biāo)的角度去思考,因此,教師在這兒要重點(diǎn)引導(dǎo))
教師明晰:在地面上建立直角坐標(biāo)系xOy,則地面上任一點(diǎn)的位置只須利用x,y就可確定。為了確定不在地面內(nèi)的電燈的位置,須要用第三個(gè)數(shù)表示物體離地面的高度,即需第三個(gè)坐標(biāo)z.因此,只要知道電燈到地面的距離、到相鄰的兩個(gè)墻面的距離即可。例如,若這個(gè)電燈在平面xOy上的射影的兩個(gè)坐標(biāo)分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個(gè)電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標(biāo)系,就建立了空間直角坐標(biāo)系O-xyz,從而確定了空間點(diǎn)的位置。
(二)、建立模型
1. 在前面研究的基礎(chǔ)上,先由學(xué)生對空間直角坐標(biāo)系予以抽象概括,然后由教師給出準(zhǔn)確的定義。
從空間某一個(gè)定點(diǎn)O引三條互相垂直且有相同單位長度的數(shù)軸,這樣就建立了空間直角坐標(biāo)系O-xyz,點(diǎn)O叫作坐標(biāo)原點(diǎn),x軸、y軸、z軸叫作坐標(biāo)軸,這三條坐標(biāo)軸中每兩條確定一個(gè)坐標(biāo)平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進(jìn)一步明確:
(1)在空間直角坐標(biāo)系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個(gè)坐標(biāo)系為右手坐標(biāo)系,課本中建立的坐標(biāo)系都是右手坐標(biāo)系。
(2)將空間直角坐標(biāo)系O-xyz畫在紙上時(shí),x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角坐標(biāo)系O-xyz中點(diǎn)的坐標(biāo)。
思考:在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)有什么樣的對應(yīng)關(guān)系?
在學(xué)生充分討論思考之后,教師明確:
(1)過點(diǎn)A作三個(gè)平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,這樣,對空間任意點(diǎn)A,就定義了一個(gè)有序數(shù)組(x,y,z)。
(2)反之,對任意一個(gè)有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點(diǎn)P,Q,R,使它們在x軸、y軸、z軸上的坐標(biāo)分別是x,y,z,再分別過這些點(diǎn)作垂直于各自所在的坐標(biāo)軸的平面,這三個(gè)平面的交點(diǎn)就是所求的點(diǎn)A.
這樣,在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)之間就建立了一種一一對應(yīng)關(guān)系:A (x,y,z)。
教師進(jìn)一步指出:空間直角坐標(biāo)系O-xyz中任意點(diǎn)A的坐標(biāo)的概念
對于空間任意點(diǎn)A,作點(diǎn)A在三條坐標(biāo)軸上的射影,即經(jīng)過點(diǎn)A作三個(gè)平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點(diǎn)A的坐標(biāo),記為A(x,y,z)。
(三)、例 題 與 練 習(xí)
1. 課本135頁例1.
注意:在分析中緊扣坐標(biāo)定義,強(qiáng)調(diào)三個(gè)步驟,第一步從原點(diǎn)出發(fā)沿x軸正方向移動5個(gè)單位,第二步沿與y軸平行的方向向右移動4個(gè)單位,第三步沿與z軸平行的方向向上移動6個(gè)單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角坐標(biāo)系中,坐標(biāo)平面xOy,xOz,yOz上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
(2)在空間直角坐標(biāo)系中,x軸、y軸、z軸上點(diǎn)的'坐標(biāo)有什么特點(diǎn)?
解:(1)xOy平面、xOz平面、yOz平面內(nèi)的點(diǎn)的坐標(biāo)分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點(diǎn)的坐標(biāo)分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個(gè)長方體的頂點(diǎn)A為坐標(biāo)原點(diǎn),射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長方體各個(gè)頂點(diǎn)的坐標(biāo)。
注意:此題可以由學(xué)生口答,教師點(diǎn)評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點(diǎn)為原點(diǎn),以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,那么各頂點(diǎn)的坐標(biāo)又是怎樣的呢?
得出結(jié)論:建立不同的坐標(biāo)系,所得的同一點(diǎn)的坐標(biāo)也不同。
[練 習(xí)]
1. 在空間直角坐標(biāo)系中,畫出下列各點(diǎn):A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個(gè)長方體的頂點(diǎn)B為坐標(biāo)原點(diǎn),射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長方體各個(gè)頂點(diǎn)的坐標(biāo)。
3. 寫出坐標(biāo)平面yOz上yOz平分線上的點(diǎn)的坐標(biāo)滿足的條件。
(四)、拓展延伸
分別寫出點(diǎn)(1,1,1)關(guān)于各坐標(biāo)軸和各個(gè)坐標(biāo)平面對稱的點(diǎn)的坐標(biāo)。
六、評價(jià)設(shè)計(jì)
1、 練習(xí) : 課本P136. 1、2、3
2、 課堂作業(yè): 課本P138. 1、2
高一數(shù)學(xué)教學(xué)計(jì)劃7
平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形 。
教學(xué)目標(biāo)
(1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn).
(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式.
(2)重點(diǎn)、難點(diǎn)分析
①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對曲線方程的`學(xué)習(xí)起著重要的作用.
直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).
、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)
(3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮.
求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
高一數(shù)學(xué)教學(xué)計(jì)劃8
一、內(nèi)容及其解析
1。內(nèi)容:這是一節(jié)建立直線的點(diǎn)斜式方程(斜截式方程)的概念課。學(xué)生在此之前已學(xué)習(xí)了在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素,已知直線上的一點(diǎn)和直線的傾斜角(斜率)可以確定一條直線,已知兩點(diǎn)也可以確定一條直線。本節(jié)要求利用確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角,建立直線方程,通過方程研究直線。
2。解析:直線方程屬于解析幾何的基礎(chǔ)知識,是研究解析幾何的開始。從整體來看,直線方程初步體現(xiàn)了解析幾何的實(shí)質(zhì)用代數(shù)的知識研究幾何問題。從集合與對應(yīng)的角度構(gòu)建了平面上的直線與二元一次方程的一一對應(yīng)關(guān)系,是學(xué)習(xí)解析幾何的基礎(chǔ)。對后續(xù)圓、直線與圓的位置關(guān)系等內(nèi)容的學(xué)習(xí),無論是知識上還是方法上都有著積極的意義。從本節(jié)來看,學(xué)生對直線既是熟悉的,又是陌生的。熟悉是學(xué)生知道一次函數(shù)的圖像是直線,陌生是用解析幾何的方法求直線的方程。直線的點(diǎn)斜式方程是推導(dǎo)其它直線方程的基礎(chǔ),在直線方程中占有重要地位。
二、目標(biāo)及其解析
1。目標(biāo)
掌握直線的點(diǎn)斜式和斜截式方程的推導(dǎo)過程,并能根據(jù)條件熟練求出直線的點(diǎn)斜式方程和斜截式方程。
2。解析
①知道直線上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。
、诶斫饨⒅本點(diǎn)斜式方程就是用直線上任意一點(diǎn)與已知點(diǎn)這兩個(gè)點(diǎn)的坐標(biāo)表示斜率。
③經(jīng)歷直線的點(diǎn)斜式方程的推導(dǎo)過程,體會直線和直線方程之間的關(guān)系,滲透解析幾何的基本思想。
④在討論直線的點(diǎn)斜式方程的應(yīng)用條件與建立直線的斜截式方程中,體會分類討論的思想,體會特殊與一般思想。
⑤在建立直線方程的過程中,體會數(shù)形結(jié)合思想。在直線的斜截式方程與一次函數(shù)的比較中,體會兩者區(qū)別與聯(lián)系,特別是體會兩者數(shù)形結(jié)合的區(qū)別,進(jìn)一步體會解析幾何的基本思想。
三、教學(xué)問題診斷分析
1。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù),知道一次函數(shù)的圖像是一條直線,因此學(xué)生對研究直線的方程可能心存疑慮,產(chǎn)生疑慮的原因是學(xué)生初次接觸到解析幾何,不明確解析幾何的實(shí)質(zhì),因此應(yīng)跟學(xué)生講請解析幾何與函數(shù)的區(qū)別。
2。學(xué)生能聽懂建立直線的點(diǎn)斜式的過程,但可能會不知道為什么要這么做。因此還是要跟學(xué)生講清坐標(biāo)法的實(shí)質(zhì)把幾何問題轉(zhuǎn)化成代數(shù)問題,用代數(shù)運(yùn)算研究幾何圖形性質(zhì)。
3。由于學(xué)生沒有學(xué)習(xí)曲線與方程,因此學(xué)生難以理解直線與直線的方程,甚至認(rèn)為驗(yàn)證直線是方程的直線是多余的。這里讓學(xué)生初步理解就行,隨著后面教學(xué)的深入和反復(fù)滲透,學(xué)生會逐步理解的。
四、教法與學(xué)法分析
1、教法分析
新課標(biāo)指出,學(xué)生是教學(xué)的主體。教師要以學(xué)生活動為主線。在原有知識的基礎(chǔ)上,構(gòu)建新的知識體系。本節(jié)課可采用啟發(fā)式問題教學(xué)法教學(xué)。通過問題串,啟發(fā)學(xué)生自主探究來達(dá)到對知識的發(fā)現(xiàn)和接受。通過縱向挖掘知識的深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新精神。并且使學(xué)生的有效思維量加大,隨著對新知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行,使學(xué)生在解決問題的同時(shí),形成方法。
2、學(xué)法分析
改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅僅限于對概念結(jié)論和技能的記憶、模仿和積累。獨(dú)立思考,自主探索,動手實(shí)踐,合作交流,閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的再創(chuàng)造的過程。為學(xué)生形成積極主動的、多樣的學(xué)習(xí)方式創(chuàng)造有利的條件。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。
通過直線的點(diǎn)斜式方程的推導(dǎo),加深對用坐標(biāo)求方程的理解;通過求直線的點(diǎn)斜式方程,理解一個(gè)點(diǎn)和方向可以確定一條直線;通過求直線的斜截式方程,熟悉用待定系數(shù)法求的過程,讓學(xué)生利用圖形直觀啟迪思維,實(shí)現(xiàn)從感性認(rèn)識到理性思維質(zhì)的飛躍。讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
五、教學(xué)過程設(shè)計(jì)
問題1:在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素是什么?如何將這些幾何要素代數(shù)化?
[設(shè)計(jì)意圖]讓學(xué)生理解直線上的`一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。
問題2:建立直線方程的實(shí)質(zhì)是什么?
[設(shè)計(jì)意圖]建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。也就是將直線上點(diǎn)的坐標(biāo)滿足的條件用方程表示出來。
引例:若直線經(jīng)過點(diǎn),斜率為,點(diǎn)在直線上運(yùn)動,那么點(diǎn)的坐標(biāo)滿足什么條件?
[設(shè)計(jì)意圖]讓學(xué)生通過具體例子經(jīng)歷求直線的點(diǎn)斜式方程的過程,初步了解求直線方程的步驟。
問題2。1要得到坐標(biāo)滿足什么條件,就是找出與、斜率為之間的關(guān)系,它們之間有何種關(guān)系?
。ㄟ^與兩點(diǎn)的直線的斜率為)
[設(shè)計(jì)意圖]讓學(xué)生尋找確定直線的條件,體會動中找靜。
問題2。2如何將上述條件用代數(shù)形式表示出來?
[設(shè)計(jì)意圖]讓學(xué)生理解和體會用坐標(biāo)表示確定直線的條件。
用代數(shù)式表示出來就是,即。
問題2。3為什么說是滿足條件的直線方程?
[設(shè)計(jì)意圖]讓學(xué)生初步感受直線與直線方程的關(guān)系。
此時(shí)的坐標(biāo)也滿足此方程。所以當(dāng)點(diǎn)在直線上運(yùn)動時(shí),其坐標(biāo)滿足。
另外以方程的解為坐標(biāo)的點(diǎn)也在直線上。
所以我們得到經(jīng)過點(diǎn),斜率為的直線方程是。
問題2。4:能否說方程是經(jīng)過,斜率為的直線方程?
[設(shè)計(jì)意圖]讓學(xué)生初步感受直線(曲線)方程的完備性。盡管學(xué)生不可能深刻理解直線(曲線)方程的完備性,但在這里仍要滲透,為后因理解曲線方程的埋下伏筆。
問題3:推廣:已知一直線過一定點(diǎn),且斜率為k,怎樣求直線的方程?
[設(shè)計(jì)意圖]由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的是歸納概括能力。
問題4:直線上有無數(shù)個(gè)點(diǎn),如何才能選取所有的點(diǎn)?以前學(xué)習(xí)中有沒有類似的處理問題的方法?
[設(shè)計(jì)意圖]引導(dǎo)學(xué)生掌握解析幾何取點(diǎn)的方法。
引導(dǎo)學(xué)生求出直線的點(diǎn)斜式方程
注:在求直線方程的過程中要說明直線上的點(diǎn)的坐標(biāo)滿足方程,也要說明以方程的解為坐標(biāo)的點(diǎn)在直線上,即方程的解與直線上的點(diǎn)的坐標(biāo)是一一對應(yīng)的。為以后學(xué)習(xí)曲線與方程打好基礎(chǔ)。教學(xué)中讓學(xué)生感覺到這一點(diǎn)就可以。不必做過多解釋。
問題5:從求直線方程的過程中,你知道了求幾何圖形的方程的步驟有哪些嗎?
[設(shè)計(jì)意圖]讓學(xué)生初步感受解析幾何求曲線方程的步驟。
、僭O(shè)點(diǎn)———用表示曲線上任一點(diǎn)的坐標(biāo);
、趯ふ覘l件————寫出適合條件;
、哿谐龇匠獭米鴺(biāo)表示條件,列出方程
、芑啞匠虨樽詈喰问剑
、葑C明————證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
例1分別求經(jīng)過點(diǎn),且滿足下列條件的直線的方程,并畫出直線。
⑴傾斜角
、菩甭
、桥c軸平行;
、扰c軸平行。
[設(shè)計(jì)意圖]讓學(xué)生掌握直線的點(diǎn)斜式的使用條件,把直線的點(diǎn)斜式方程作公式用,讓學(xué)生熟練掌握直線的點(diǎn)斜式方程,并理解直線的點(diǎn)斜式方程使用條件。
注:⑴應(yīng)用直線的點(diǎn)斜式方程的條件是:①定點(diǎn),②斜率存在,即直線的傾斜角。
、婆c的區(qū)別。后者表示過,且斜率為k的直線方程,而前者不包括。
、钱(dāng)直線的傾斜角時(shí),直線的斜率,直線方程是。
、犬(dāng)直線的傾斜角時(shí),此時(shí)不能直線的點(diǎn)斜式方程表示直線,直線方程是。
練習(xí):1。。
2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經(jīng)過的一個(gè)已知點(diǎn)為。
[設(shè)計(jì)意圖]在直線的點(diǎn)斜式方程的逆用過程中,進(jìn)一步體會和理解直線的點(diǎn)斜式方程。
問題6:特別地,如果直線的斜率為,且與軸的交點(diǎn)坐標(biāo)為(0,b),求直線的方程。
[設(shè)計(jì)意圖]由一般到特殊,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念和直線斜截式方程。
將斜率與定點(diǎn)代入點(diǎn)斜式直線方程可得:
說明:我們把直線與y軸交點(diǎn)(0,b)的縱坐標(biāo)b叫做直線在y軸上的截距。這個(gè)方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。
注(1)截距可取任意實(shí)數(shù),它不同于距離。直線在軸上截距的是。
(2)斜截式方程中的k和b有明顯的幾何意義。
(3)斜截式方程的使用范圍和斜截式一樣。
問題7:直線的斜截式方程與我們學(xué)過的一次函數(shù)的類似。我們知道,一次函數(shù)的圖像是一條直線。你如何從直線方程的角度認(rèn)識一次函數(shù)?一次函數(shù)中k和b的幾何意義是什么?
[設(shè)計(jì)意圖]讓學(xué)生理解直線方程與一次函數(shù)的區(qū)別與聯(lián)系,進(jìn)一步理解解析幾何的實(shí)質(zhì)。函數(shù)圖像是以形助數(shù),而解析幾何是以數(shù)論形。
練習(xí):1。。
2。直線的斜率為2,在軸上的截距為,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生明確截距的含義。
3。直線過點(diǎn),它的斜率與直線的斜率相等,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生進(jìn)一步理解直線斜截式方程的結(jié)構(gòu)特征。
4。已知直線過兩點(diǎn)和,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生能合理選擇直線方程的不同形式求直線方程,同時(shí)為下節(jié)學(xué)習(xí)直線的兩點(diǎn)式方程埋下伏筆。
例2:已知直線,試討論
。1)與平行的條件是什么?
。2)與重合的條件是什么?
。3)與垂直的條件是什么?
說明:①平行、重合、垂直都是幾何上位置關(guān)系,如何用代數(shù)的數(shù)量關(guān)系來刻畫。
、诮虒W(xué)中從兩個(gè)方面來說明,若兩直線平行,則且反過來,若且,則兩直線平行。
③若直線的斜率不存在,與之平行、垂直的條件分別是什么?
練習(xí):
問題8:本節(jié)課你有哪些收獲?
要點(diǎn):
。1)直線方程的點(diǎn)斜式、斜截式的命名都是顧名思義的,要會加以區(qū)別。
。2)兩種形式的方程要在熟記的基礎(chǔ)上靈活運(yùn)用。
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。
高一數(shù)學(xué)教學(xué)計(jì)劃9
本學(xué)期擔(dān)任高一x、x兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個(gè)班的學(xué)生整體水平不高。部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價(jià)自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學(xué)目標(biāo):
。ㄒ唬┣橐饽繕(biāo)
。1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
。3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價(jià),提高學(xué)生的合作意識
。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
。ǘ┠芰σ笈囵B(yǎng)學(xué)生記憶能力
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的`背景事實(shí)及具體數(shù)據(jù)的記憶。
。2)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運(yùn)算能力
。1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。
。2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。
(3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。
高一數(shù)學(xué)教學(xué)計(jì)劃10
、
Ⅰ.教學(xué)內(nèi)容解析
本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì).
這是指數(shù)函數(shù)在本章的位置.
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個(gè)新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程.
指數(shù)函數(shù)模型在貸款利率的計(jì)算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實(shí)意義.
、颍虒W(xué)目標(biāo)設(shè)置
1.學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念.
2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個(gè)冪的大小.
3.學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法.
4.在探究活動中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.
、螅畬W(xué)生學(xué)情分析
授課班級學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生.
1.學(xué)生已有認(rèn)知基礎(chǔ)
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認(rèn)識.學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn).學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.
2.達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)
學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認(rèn)識,需要具備較好的歸納、猜想和推理能力.
3.難點(diǎn)及突破策略
難點(diǎn):1. 對研究函數(shù)的一般方法的認(rèn)識.
2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.
突破策略:
1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識研究的目標(biāo)與手段.
2.組織匯報(bào)交流活動,展現(xiàn)思維過程,相互評價(jià),相互啟發(fā),促進(jìn)反思.
3.對猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.
、簦虒W(xué)策略設(shè)計(jì)
根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.
學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個(gè)環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時(shí),學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念.
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時(shí),學(xué)生自選底數(shù),開展自主研究,并通過匯報(bào)交流相互提升.
(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個(gè)方面展開.從圖形直觀和數(shù)量關(guān)系兩個(gè)方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時(shí)應(yīng)用函數(shù)解析式輔以必要的說明和證明.
Ⅴ.教學(xué)過程設(shè)計(jì)
1.創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個(gè)變量之間的關(guān)系.你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?
師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個(gè)數(shù)為y,如何描述這兩個(gè)變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個(gè)變量的關(guān)系?
[師生活動]引導(dǎo)學(xué)生分析,找到兩個(gè)變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個(gè)例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?
[設(shè)計(jì)意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示.初步得到y(tǒng)=ax這個(gè)形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時(shí),y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.
[師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.
[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn).進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax.
方案1:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…
師:板書學(xué)生舉例(停頓),好像有不同意見.
生:底數(shù)不能取負(fù)數(shù).
師:為什么?
生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.
師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,我們希望這些函數(shù)的.定義域就是R.
(若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴(kuò)充為R?你們所舉的例子中,定義域是否為R?)
師:這些函數(shù)有什么共同特點(diǎn)?
生:都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.
(若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點(diǎn)的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會基本初等函數(shù)的作用.)
師:具備上述特征的函數(shù)能否寫成一般形式?
生:可以寫成y=ax(a>0).
師:當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)
方案2:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,…
師:這些函數(shù)的自變量是什么?它們有什么共同特點(diǎn)?
生:(可用文字語言或符號語言概括)都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.
師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?
生:底數(shù)不能取負(fù)數(shù).
師:為什么?
生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.
師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)
[階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.
[意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項(xiàng)注意”的做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細(xì)枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個(gè)由粗到細(xì),由特殊到一般,由具體到抽象的漸進(jìn)過程,這樣更加符合人們的認(rèn)知心理.
2.實(shí)驗(yàn)探索匯報(bào)交流
(1)構(gòu)建研究方法
師:我們定義了一個(gè)新的函數(shù),接下來,我們研究什么呢?
生:研究函數(shù)的性質(zhì).
〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?
[設(shè)計(jì)意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對函數(shù)有了初步的認(rèn)識.在此認(rèn)知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個(gè)性,提供自主探究的平臺,通過匯報(bào)交流活動達(dá)成共識實(shí)現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.
[師生活動]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.
[教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識和經(jīng)驗(yàn),在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進(jìn)而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.
師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?
生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.
師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?
生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).
生:先研究幾個(gè)具體的指數(shù)函數(shù),再研究一般情況.
師:板書“畫圖觀察”,“取特殊值”
(若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會有不同.一次函數(shù)y=kx(k≠0)中,一次項(xiàng)系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個(gè)值,那我們怎么辦呢?)
(若有學(xué)生通過對y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))
[意圖分析]學(xué)習(xí)的過程就是一個(gè)不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機(jī)會,逐漸學(xué)會研究問題,促進(jìn)能力發(fā)展.
(2)自主探究匯報(bào)交流
師:我們確定了要研究的對象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.
〖問題3選取數(shù)據(jù),畫出圖象,觀察特點(diǎn),歸納性質(zhì).
[設(shè)計(jì)意圖]若直接規(guī)定底數(shù)取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對于圖象的認(rèn)識是被動的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認(rèn)知水平的差異,仍可能會造成部分學(xué)生被動接受.學(xué)生自主選擇底數(shù),雖有得到片面認(rèn)識的可能,但通過討論交流,學(xué)生能相互驗(yàn)證結(jié)論,仍能得到正確認(rèn)識.并且學(xué)生能在過程中體會數(shù)據(jù)如何選擇,了解研究方法.
由于描點(diǎn)作圖時(shí)列舉點(diǎn)的個(gè)數(shù)的限制,學(xué)生對x→∞時(shí)函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個(gè)數(shù)的限制,學(xué)生對于歸納的結(jié)論缺乏一般性的認(rèn)識.教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗(yàn)證猜想.
數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節(jié)課的重點(diǎn)是通過對指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動學(xué)生參與研究的每個(gè)過程,得到直接體驗(yàn).
[師生活動]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).
[教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實(shí)物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對結(jié)論進(jìn)行適當(dāng)?shù)恼f明,進(jìn)而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點(diǎn)作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動態(tài)圖象驗(yàn)證猜想,促進(jìn)學(xué)生體會數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強(qiáng)加于學(xué)生.對于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.
生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).
師:(巡視,必要時(shí)參與討論,及時(shí)提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵(lì)學(xué)生交流,請學(xué)生匯報(bào).)有條理地整理一下結(jié)論,討論交流所得.(同時(shí)用實(shí)物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)
生:(可能出現(xiàn)的情況)(1)在兩個(gè)坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個(gè)底數(shù)大于1,一個(gè)底數(shù)小于1;(4)關(guān)于y軸對稱的兩個(gè)指數(shù)函數(shù).
師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個(gè)坐標(biāo)系中畫圖?為什么不也取兩個(gè)底數(shù)小于1?
師:(用彩筆描粗圖象,故意出錯(cuò))錯(cuò)在哪里?為什么?
生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(diǎn)(0, 1).
師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(diǎn)(0, 1).
師:指數(shù)函數(shù)還有其它性質(zhì)嗎?
師:也就是說值域?yàn)?0, +∞).
生:指數(shù)函數(shù)是非奇非偶函數(shù).
師:有不同意見嗎?
生:當(dāng)0
(其它預(yù)設(shè):
(1)當(dāng)a>1時(shí),若x>0,則y>1;若x<0,則y<1.
當(dāng)00,則y<1;若x<0 y="">1.
(2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.
(3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)
師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說明結(jié)論的合理性,可提供機(jī)會.)大家認(rèn)為底數(shù)a>1或0
[階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):
、俣x域?yàn)镽.
②值域?yàn)?0, +∞).
、蹐D象過定點(diǎn)(0, 1).
④非奇非偶函數(shù).
、莓(dāng)a>1時(shí),函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;
當(dāng)0
、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.
、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:
x∈(-∞, 0)時(shí),y=ax圖象在y=bx圖象下方;
x=0時(shí),兩圖象相交;
x∈(0,+∞)時(shí),y=ax圖象在y=bx圖象上方.
[意圖分析]通過探究活動,使學(xué)生獲得對指數(shù)函數(shù)圖象的直觀認(rèn)識.學(xué)生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報(bào)過程中,一方面要通過對探究較深入學(xué)生的具體研究過程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識與能力都薄弱的學(xué)生的表現(xiàn),鼓勵(lì)他們大膽發(fā)言,激勵(lì)他們主動參與活動,讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點(diǎn).
3.新知運(yùn)用鞏固深化
(方案一)(分析函數(shù)性質(zhì)的用途)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運(yùn)用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(diǎn)(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?
生:可以求最值,可以比較兩個(gè)函數(shù)值的大小.
師:那你能舉出運(yùn)用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運(yùn)用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)
生:(舉例并判斷大小.)
師:你考察了哪個(gè)指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)
師:以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.(出示例1)
(方案二)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:(口述并板書)你能比較32與33的大小嗎?
生:直接計(jì)算比較.
師:那比較30.2與30.3的大小呢?能不能不計(jì)算呢?
生:利用函數(shù)y=3x的單調(diào)性.
師:能具體說明嗎?(引導(dǎo)學(xué)生規(guī)范表達(dá))我們再試一試.
(出示例1)
【例1】比較下列各組數(shù)中兩個(gè)值的大小:
、1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[設(shè)計(jì)意圖] 引導(dǎo)學(xué)生運(yùn)用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學(xué)生更可能計(jì)算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進(jìn)而運(yùn)用指數(shù)函數(shù)單調(diào)性,也可能直接運(yùn)用單調(diào)性.初步運(yùn)用新知解決問題,注重題意理解,擴(kuò)大知識遷移,感悟解題方法,達(dá)到對新知鞏固記憶,加深理解.
[師生活動]學(xué)生板演,教師組織學(xué)生點(diǎn)評.
[教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運(yùn)用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯(cuò)誤答案,教師可組織相互點(diǎn)評,規(guī)范表達(dá),正確運(yùn)用性質(zhì).③學(xué)生可能運(yùn)用不同方法,應(yīng)給予充分的時(shí)間,并在具體問題解決后引導(dǎo)學(xué)生總結(jié)一般方法.
師:(引導(dǎo)學(xué)生規(guī)范表達(dá))你考察了哪個(gè)指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?
師:(對③的引導(dǎo))你考慮利用哪個(gè)函數(shù)?是y=1.5x還是y=0.8x?這兩個(gè)函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)
生:它們都過點(diǎn)(0, 1).
師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?
生:比較1.50.3,0.81.2和1的大小.
師:我們找到了一個(gè)比大小的中間量.以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.
【例2】
、僖阎3x≥30.5,求實(shí)數(shù)x的取值范圍;
②已知0.2x<25,求實(shí)數(shù)x的取值范圍.
[設(shè)計(jì)意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時(shí)考查指數(shù)函數(shù)的定義域.
4.概括知識總結(jié)方法
〖問題4本節(jié)課我們學(xué)習(xí)了哪些知識?你還學(xué)會了哪些方法?
[設(shè)計(jì)意圖] 回顧所學(xué)內(nèi)容,深化認(rèn)知.開放式小結(jié),不同學(xué)生有不同的收獲.
[師生活動]學(xué)生發(fā)言總結(jié),交流所得.
[教學(xué)預(yù)設(shè)]
通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識和方法:
①指數(shù)函數(shù)的定義與性質(zhì);
、谘芯亢瘮(shù)的一般方法和步驟.
師:本節(jié)課我們學(xué)習(xí)了什么知識?
生:指數(shù)函數(shù)的定義和性質(zhì).
師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?
生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).
生:然后從幾個(gè)具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.
師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運(yùn)用這樣的方法研究新的函數(shù).
[意圖分析]課堂總結(jié)不是對所學(xué)知識的簡單回顧,應(yīng)讓學(xué)生在知識、方法和策略上多層次地整理,促進(jìn)學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識與能力的共同進(jìn)步.
5.分層作業(yè),因材施教
(1)感受理解:課本第54頁,習(xí)題2.2(2):1,2,3,4;
(2)思考運(yùn)用:運(yùn)用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?
[設(shè)計(jì)意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運(yùn)用”提供學(xué)生運(yùn)用函數(shù)研究的一般方法自主研究的機(jī)會.
、觯毯蠓此蓟仡
一、對于指數(shù)函數(shù)概念的認(rèn)識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會模型思想.
二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識水平或教學(xué)要求進(jìn)行證明或合理的說明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識,也初步體驗(yàn)了研究問題的基本方法.
三、關(guān)于設(shè)計(jì)定位的反思
本節(jié)課的教學(xué)設(shè)計(jì),力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進(jìn)行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程.、
高一數(shù)學(xué)教學(xué)計(jì)劃11
一、制定的依據(jù)
隨著高一新教材的全面實(shí)施,本年級數(shù)學(xué)學(xué)科的教學(xué)進(jìn)入了新課程改革實(shí)際階段,
本計(jì)劃制定的依據(jù)主要是以下三個(gè):
(1)二期課改的理念:一個(gè)為本、三類課程、三維目標(biāo)
。2)新數(shù)學(xué)課程標(biāo)準(zhǔn)
(3)三本書:課本、教參、練習(xí)冊
。4)本校教研組對本學(xué)期學(xué)科的要求
二、基本情況分析
高一(3)全班共52人,男生24人,_28人。上學(xué)期期末為區(qū)統(tǒng)測,平均分為54、1分,合格率為5%,優(yōu)秀率為0%,低分率為56%。高一(4)全班共53人,男生26人,_27人。上學(xué)期期末為區(qū)統(tǒng)測,平均分為50、3分,合格率為3%,優(yōu)秀率為0%,低分率為62%。
從上學(xué)期期末統(tǒng)測來看,我班的學(xué)生在數(shù)學(xué)學(xué)習(xí)上可以說既有優(yōu)勢也有不足。優(yōu)勢是:1、有潛力。2、師生關(guān)系比較融洽,互相信任,配合默契。存在的不足是:1、聰明有余,而努力不足。2、男生聰明,上課積極,但不夠勤奮、踏實(shí)。_認(rèn)真,但上課效率不高,學(xué)得不夠靈活。3、從期末統(tǒng)測來看,差生的比重大。4、個(gè)別學(xué)生懶惰成性,學(xué)習(xí)態(tài)度、學(xué)習(xí)習(xí)慣極差。5、平時(shí)學(xué)習(xí)不夠用心,自覺,專心思考、鉆研的時(shí)間太少。6、一些同學(xué)學(xué)習(xí)成績起伏大,不穩(wěn)定。7、一些好學(xué)生滿足現(xiàn)狀,驕傲自滿,思想放松,導(dǎo)致成績退步。8、學(xué)習(xí)興趣,動力,上進(jìn)心不足。
三、本學(xué)期力爭達(dá)到的目標(biāo)
1、完成三類課程的教學(xué)任務(wù);A(chǔ)性課程要扎扎實(shí)實(shí),夯實(shí)基礎(chǔ)。拓展性課程要適當(dāng)延伸和補(bǔ)充,進(jìn)一步提高學(xué)生的能力和水平。研究性課程要重過程,不重結(jié)果,培養(yǎng)學(xué)生自主學(xué)習(xí),探索研究的習(xí)慣與品質(zhì)。
2、完成新數(shù)學(xué)課程標(biāo)準(zhǔn)規(guī)定的教學(xué)目標(biāo)。
3、進(jìn)一步規(guī)范學(xué)生的學(xué)習(xí)習(xí)慣(包括預(yù)習(xí)、上課、作業(yè)、復(fù)習(xí)等)。
4、轉(zhuǎn)化學(xué)困生,提高成績。有些學(xué)生成績總是上不去,以為不是塊讀數(shù)學(xué)的料,久而久之,產(chǎn)生放棄數(shù)學(xué),討厭數(shù)學(xué)的心理。由此,我在學(xué)習(xí)中,要多方面激發(fā)其學(xué)習(xí)興趣,耐心指導(dǎo),不斷激勵(lì)。讓其感受到成功的喜悅,增強(qiáng)自信心,讓其喜歡數(shù)學(xué),找到學(xué)習(xí)數(shù)學(xué)的樂趣。
5、一手提高優(yōu)秀率,一手減少不及格人數(shù),力爭班與班之間無明顯差距。
四、具體措施
1、從期末統(tǒng)測來看,學(xué)困生的比重大,優(yōu)秀率沒有。為此要進(jìn)行分層教學(xué),學(xué)困生要注重基本題、常規(guī)題的反復(fù)操練,增強(qiáng)他們對數(shù)學(xué)學(xué)習(xí)的信心和興趣。好學(xué)生要避免無謂失分的情況,注重?cái)?shù)學(xué)思想、方法、能力的培養(yǎng),著眼于高三?偠灾,學(xué)困生還是繼續(xù)注重雙基的訓(xùn)練,將做過,講過的題目再反復(fù)操練。另外也不能忽略了高分學(xué)生的培養(yǎng),給好學(xué)生布置一些有質(zhì)量的課外題,定期查閱,批改,答疑。這樣,通過抓兩頭,促中間,帶動整體水平的提高。
2、提高教學(xué)質(zhì)量,要抓好課堂教學(xué)這一主陣地。根據(jù)課程標(biāo)準(zhǔn),教參,切實(shí)落實(shí)教學(xué)目標(biāo),做到全面不遺漏,要以考綱為標(biāo)準(zhǔn)。另外,每節(jié)課要安排必要的練習(xí)時(shí)間,多安排隨堂測試是有好處的。試題講解時(shí)要突出方法,突出思考、分析過程,要暴露學(xué)生解題過程中思維、概念、計(jì)算等方面的錯(cuò)誤,對學(xué)生的錯(cuò)誤要有針對性的矯正,補(bǔ)償。不就題講題,注意適當(dāng)?shù)淖兪。幫助學(xué)生掌握解題的方法,積累解題經(jīng)驗(yàn),課后要引導(dǎo)學(xué)生進(jìn)行反思、訂正,以加深對概念的理解,方法的掌握。
3、從期末統(tǒng)測看學(xué)生應(yīng)用能力明顯不足。教師要通過平時(shí)教學(xué)培養(yǎng)學(xué)生閱讀審題、數(shù)學(xué)建模的能力。讓學(xué)生熟悉一些常見的實(shí)際問題的背景,及解決這些問題的相關(guān)數(shù)學(xué)知識。
4、期末統(tǒng)測中選擇題普遍得分不高,應(yīng)引起我們的重視,《高一數(shù)學(xué)教學(xué)計(jì)劃》由于選擇題只有答案,所以解答選擇題的策略是:合理、迅速、檢驗(yàn),要善于轉(zhuǎn)化,避免機(jī)械套用公式、定理和“小題大做,舍近求遠(yuǎn),簡單問題復(fù)雜化”的不良習(xí)慣。另外,由填空題的錯(cuò)誤表達(dá)和解答題的計(jì)算粗心、考慮不全面而造成的無謂失分,導(dǎo)致了分?jǐn)?shù)上不去和好學(xué)生考不出高分。所以,為保證得到該得的分?jǐn)?shù),要求必須認(rèn)真審題,明確要求,弄清概念,思考全面,正確表達(dá)。
5、注重講練結(jié)合。要多安排課堂練習(xí),當(dāng)堂檢測。當(dāng)日作業(yè),周練,月考要及時(shí)安排時(shí)間進(jìn)行講評。平時(shí)要注意練習(xí)的有效性(適當(dāng)題量,恰當(dāng)難度,精選精練),規(guī)范書寫,認(rèn)真批改,及時(shí)講評,反饋矯正(建立錯(cuò)題集,進(jìn)行再認(rèn)識)。堅(jiān)決反對只練不講,只講不練。評講中要針對學(xué)生的錯(cuò)因進(jìn)行分析,找出存在的問題,有針對性地加以彌補(bǔ)缺漏,發(fā)現(xiàn)問題要跟蹤到題,跟蹤到人。本次統(tǒng)測中許多試題平時(shí)講過,練過,考過,但錯(cuò)誤仍然很多,值得我們重視與反思。
五、保障措施和可行性
1、關(guān)愛學(xué)生,嚴(yán)格要求,用情實(shí)現(xiàn)師與生的溝通,用景實(shí)現(xiàn)教與學(xué)的融合。
2、加強(qiáng)基礎(chǔ)知識、基本技能、基本方法的教學(xué)和基本能力的培養(yǎng),精心組織教學(xué)內(nèi)容,難度要適當(dāng),要追求最有效的訓(xùn)練,要清楚哪些學(xué)生需要哪些訓(xùn)練,切實(shí)注重部分學(xué)生的補(bǔ)差和提高,關(guān)注全體學(xué)生的學(xué),基本教學(xué)要求要有效落實(shí)到位。
3、注重加強(qiáng)知識之間的聯(lián)系和綜合,內(nèi)容和方式要更新,有層次推進(jìn),多角度理解,反思總結(jié),重視教與學(xué)的'方式多樣化。
4、激發(fā)興趣,重視過程教學(xué),重視錯(cuò)誤分析型學(xué)習(xí)。
5、重視開放性、研究性問題的教學(xué),關(guān)注主觀評判性問題的學(xué)習(xí),研究新題型,真正發(fā)展學(xué)生的數(shù)學(xué)素質(zhì),培養(yǎng)其數(shù)學(xué)能力。
6、結(jié)合二期課改新課程標(biāo)準(zhǔn)、教參,扎實(shí)落實(shí)集體備課,通過集體討論,抓住教學(xué)內(nèi)容的實(shí)質(zhì),形成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。
7、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。
8、加強(qiáng)課外輔導(dǎo),利用中午和晚間休息時(shí)間輔導(dǎo)學(xué)生答疑解惑、找學(xué)生談話等等。課外輔導(dǎo)是課堂的有力補(bǔ)充,是提高數(shù)學(xué)成績的有力手段。
9、搞好單元考試、階段性考試的分析。學(xué)生只有通過不斷的練習(xí)才能提高成績,單元考試、階段性考試是的練習(xí),每次都要做好分析,并指導(dǎo)學(xué)生糾錯(cuò)。在分析過程中要遵循自主的思維習(xí)慣,使學(xué)生真正理解,過關(guān)。
10、學(xué)生除配套練習(xí)冊外,每人訂一本《一課一練》作為補(bǔ)充練習(xí),并要求每周寫學(xué)習(xí)感悟與學(xué)習(xí)疑惑,每人準(zhǔn)備一本錯(cuò)題本收集錯(cuò)題,每人在課本留白處做好課堂筆記。另外,我自己有充足的時(shí)間與資料,進(jìn)行習(xí)題精選與練習(xí)補(bǔ)充。
六、總目標(biāo)達(dá)成度與現(xiàn)階段教學(xué)目標(biāo)達(dá)成度的相關(guān)分析
本學(xué)期一定要在如何提高課堂效率上下功夫,同時(shí)抓平時(shí)的學(xué)習(xí)習(xí)慣,學(xué)習(xí)規(guī)范,作業(yè)質(zhì)量等細(xì)節(jié)問題,切實(shí)提高學(xué)習(xí)的有效性。另外,在上學(xué)期的基礎(chǔ)上,本學(xué)期力爭消滅不及格,并使那些因無謂失分而導(dǎo)致分?jǐn)?shù)起伏不定的學(xué)生能穩(wěn)定下來,從而進(jìn)一步提高優(yōu)秀率。
目前,我班面臨的困難與問題還非常多,好在學(xué)生的學(xué)習(xí)勢頭保持良好。我和我們班的全體學(xué)生,將盡我們所能,力爭在本學(xué)期能有所收獲,更進(jìn)一步。
七、課堂教學(xué)改革與創(chuàng)新、信息技術(shù)的應(yīng)用與整合
1、結(jié)合二期課改,將“接受式學(xué)習(xí)”變?yōu)椤爸鲃邮綄W(xué)習(xí)”,“啟發(fā)式學(xué)習(xí)”,將“要我學(xué)”變?yōu)椤拔乙獙W(xué)”,并積極開展拓展性課程,研究性課程,培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力。
2、加強(qiáng)基礎(chǔ)訓(xùn)練,但要避免“題!睉(zhàn)術(shù),要精講精練,舉一反三,突出方法,總結(jié)經(jīng)驗(yàn),采取變式訓(xùn)練,專題訓(xùn)練等多種方式。
3、針對本學(xué)期三角公式多的特點(diǎn),設(shè)計(jì)一些學(xué)生學(xué)習(xí)支持材料,如公式默寫表,公式背誦口訣,公式記憶方法,公式小卡片等。
4、借助“TI圖形計(jì)算器”強(qiáng)大的圖形功能以及多媒體教學(xué)設(shè)備,制作精美課件,輔助教學(xué),使教學(xué)內(nèi)容更加形象直觀,通俗易懂。
5、利用“Bb”系統(tǒng)建設(shè)e課堂,建設(shè)網(wǎng)絡(luò)學(xué)習(xí)包。
6、寫數(shù)學(xué)感悟或一周問題,與學(xué)生進(jìn)行書面討論交流,答疑解惑,給予學(xué)法指導(dǎo)。
7、對不同層次的學(xué)生進(jìn)行分層輔導(dǎo),分層補(bǔ)充課外練習(xí)。
8、進(jìn)行數(shù)學(xué)演講,了解數(shù)學(xué)史,寫寫數(shù)學(xué)周記等,提升學(xué)生的數(shù)學(xué)素養(yǎng)與興趣。
高一數(shù)學(xué)教學(xué)計(jì)劃12
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5第一章:解三角形。重點(diǎn)是正弦定理與余弦定理。難點(diǎn)是正弦定理與余弦定理的應(yīng)用。第二章:數(shù)列。重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和。難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用。第三章:不等式。重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式。難點(diǎn)是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用。
必修2第一章:空間幾何體。重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積。難點(diǎn)是空間幾何體的三視圖。第二章:點(diǎn)、直線、平面之間的位置關(guān)系。重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì)。第三章:直線與方程。重點(diǎn)是直線的傾斜角與斜率及直線方程。難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目。第四章:圓與方程。重點(diǎn)是圓的方程及直線與圓的位置關(guān)系。難點(diǎn)是直線與圓的位置關(guān)系。
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求
1、通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計(jì)算有關(guān)的實(shí)際問題。
2、通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù)。理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識解決相應(yīng)的問題。
3、理解不等式(組)對于刻畫不等關(guān)系的意義和價(jià)值。掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題。能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4、幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識和探索幾何圖形及其性質(zhì)的.方法。先從對空間幾何體的整體觀察入手,認(rèn)識空間圖形及其直觀圖的畫法。再以長方體為載體,直觀認(rèn)識和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一。上好每一節(jié)課,及時(shí)對學(xué)生的思想進(jìn)行觀察與指導(dǎo)。課后進(jìn)行有效的輔導(dǎo)。進(jìn)行有效的課堂反思。
高一數(shù)學(xué)教學(xué)計(jì)劃13
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個(gè)實(shí)際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中.同時(shí),通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.
學(xué)情分析
一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的`學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).
教學(xué)目標(biāo)
1.知識與技能
、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
、诹私饪臻g直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過程
、鄹惺茴惐人枷朐谔骄啃轮R過程中的作用
2.過程與方法
、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
、陬惐葘W(xué)習(xí),循序漸進(jìn)
3.情感態(tài)度與價(jià)值觀
通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法.通過實(shí)際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.
教學(xué)重點(diǎn)
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為空間直角坐標(biāo)系的理解.
教學(xué)難點(diǎn)
通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.
高一數(shù)學(xué)教學(xué)計(jì)劃14
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2、“問題性”:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3、“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4、“時(shí)代性”與“應(yīng)用性”:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
三、教法分析:
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的`語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。
同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性。注意運(yùn)用對比的方法,反復(fù)比較相近的概念。注意結(jié)合直觀圖形,說明抽象的知識。注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系。加強(qiáng)復(fù)習(xí)檢查工作。抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教學(xué)計(jì)劃15
本學(xué)期我擔(dān)任高一(3)、(4)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有138人。大部分學(xué)生初中的基礎(chǔ)較差,整體水平不高。從上課兩周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還比較高,愛問問題的學(xué)生比較多;但由于基礎(chǔ)知識不太牢固,沒有良好的學(xué)習(xí)習(xí)慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學(xué)工作有必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
一、教學(xué)質(zhì)量目標(biāo)
(1)獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。
(2)培養(yǎng)學(xué)生的邏輯思維本事、運(yùn)算本事、空間想象本事,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識分析問題和解決問題的本事。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的本事;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的本事。
(3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4)使學(xué)生具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
。5)學(xué)會經(jīng)過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。
。6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重職責(zé),既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合本事的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、教學(xué)目標(biāo)、
。ㄒ唬┣楦心繕(biāo)
。1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
。3)在探究基本函數(shù)的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價(jià),提高學(xué)生的合作意識。
。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時(shí)間和空間給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維本事的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗(yàn)發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程法。
。ǘ┍臼乱
1、培養(yǎng)學(xué)生記憶本事。
。1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
。2)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運(yùn)算本事。
。1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算本事。
。2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算本事。
。3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性本事。
。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算本事,促使知識間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算本事。
三、學(xué)情分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實(shí)際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
四、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施
重點(diǎn)工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以雙基教學(xué)為主要資料,堅(jiān)持抓兩頭、帶中間、整體推進(jìn),使每個(gè)學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的'知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
4、讓學(xué)生經(jīng)過單元考試,檢測自我的實(shí)際應(yīng)用本事,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
5、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
6、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實(shí)際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育;同時(shí)重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。
7、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。
8、注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)、所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識與重點(diǎn)資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
【高一數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:
高一數(shù)學(xué)的教學(xué)計(jì)劃01-17
對高一數(shù)學(xué)教學(xué)計(jì)劃12-24
高一數(shù)學(xué)教學(xué)計(jì)劃10-27
高一數(shù)學(xué)的教學(xué)計(jì)劃03-14
高一學(xué)期數(shù)學(xué)教學(xué)計(jì)劃08-09
【薦】高一數(shù)學(xué)教學(xué)計(jì)劃12-23
【熱門】高一數(shù)學(xué)教學(xué)計(jì)劃12-23
高一數(shù)學(xué)教學(xué)計(jì)劃【熱門】12-23