丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>七年級數(shù)學教案>七年級數(shù)學上冊教案

七年級數(shù)學上冊教案

時間:2024-10-19 12:55:19 七年級數(shù)學教案 我要投稿

七年級數(shù)學上冊教案【經(jīng)典】

  作為一無名無私奉獻的教育工作者,通常會被要求編寫教案,借助教案可以更好地組織教學活動。那么什么樣的教案才是好的呢?以下是小編精心整理的七年級數(shù)學上冊教案,僅供參考,歡迎大家閱讀。

七年級數(shù)學上冊教案【經(jīng)典】

七年級數(shù)學上冊教案1

  復習目標

  1、 經(jīng)歷猜測、試驗、收集與分析試驗結果等活動過程。

  2、 初步體驗有些事件的發(fā)生是確定的,有些則是不確定的,能區(qū)分確定事件與不確定事件。

  3、 知道事件發(fā)生的可能性是有大小的,能對一些簡單事件發(fā)生的可能性作出描述,能列舉出簡單試驗所有可能發(fā)生的結果,并和同伴交換想法。

  復習內(nèi)容

  一、基礎知識填空

  1.在一定條件下,肯定會發(fā)生的事情稱為 必然事件 ;在一定條件下,一定不會發(fā)生的事情稱為 不可能事件 ;必然 事件與 不可能 事件都是確定 的;在一定條件下,可能會發(fā)生,也可能不會發(fā)生的事件稱為 不確定 事件。

  2.在“轉盤游戲”中,哪個區(qū)域的面積大,則指針落到該區(qū)域的 可能性 大。

  二、典型例題

  例題1:下列事件中,哪些是必然事件?哪些是不可能事件,哪些是不確定事件?

 。1)一年有12個月; (2)擲一枚一元硬幣,停止后國徽朝上;

 。3)明天要下雪; (4)1/4周角=1直角;

 。5)任意買一張電影票座位號是奇數(shù);(6)小明的生日是2月30日;

 。7)一條魚在白云中飛翔。

  分析與解:(1)、(4)是必然事件;(6)、(7)是不可能事件;

 。2)、(3)、(5)是不確定事件。因為(6)中2月只有28天,不可能有30日,所以是不可能事件。

  注意:在判別事件是確定還是不確定,關鍵是根據(jù)一定的條件弄清它是一定會發(fā)生或一定不會發(fā)生,還是無法肯定它會不會發(fā)生。

  例題2:醫(yī)院的護士給病人注射青霉素類藥水時,要先做皮試。但根據(jù)有關數(shù)據(jù)顯示,只有大約千分之一的人對青霉素過敏,但護士為什么每次都這樣做呢?這樣做是不是多此一舉?

  分析與解:青霉素過敏的'可能性只有千分之一,但它總是有可能發(fā)生的,我們不能確定每一個注射的病人都不會過敏,因此“青霉素過敏”這一事件是可能事件。為了每位病人的生命安全,一定要先做皮試,此種做法不是多此 一舉。

  注意:“不太可能事件”雖然可能性很小,但它仍有可能發(fā)生。

  例題3:一只螞蟻在如圖所示的一塊地板上爬行,這塊地板由黑白兩種不同顏色外其它完全相同的地磚鋪成,爬行一段時間后,螞蟻停在哪種顏色地磚上的可能性大,為什么?

  分析與解:

  因為白色的塊數(shù)是10,黑色的塊數(shù)是6,白色區(qū)域的面積大,所以螞蟻停在白顏色地磚上的可能性大。

  注意:有關可能性問題,有時可通過比較各種區(qū)域所占面積的大小來確定。

  例題4:袋中有4只紅球、2只白球、1只黃球,這些球除了顏色以外完全相同,小華認為袋中共有三種不同顏色的球,所以從袋中任意摸出一球,摸到紅球、 白球、黃球的可能性一樣大,小強認為三種球的數(shù)量不同,摸到紅球、白球、黃球的可能性肯定也不同,你認為誰說的正確,并說明理由。

  分析與解:

  注意:此題中摸到各種顏色球的可能性大小只與該球的顏色有關,與該球的大小、形狀等其它因素無關。

  三、課時

  1、能舉例說明生活中的不確定事件,并能用“不可能”、“有可能”、“幾乎不可能” 等詞語描述它們發(fā)生的可能性大小。

  2、了解事件發(fā)生的可能性是有大小的,并初步學會求不確定事件的可能性大小。

  3、能養(yǎng)成獨立思考的習慣,學會與同伴充分交流的良好學習方式。

  四、課外作業(yè)

七年級數(shù)學上冊教案2

  教學目標

  知識與技能:

  1.會求代數(shù)式的值,會利用代數(shù)式求值判斷代數(shù)式所反應的規(guī)律;

  2.能利用求代數(shù)式的值解決較簡單的實際問題;

  過程與方法:

  3.通過求代數(shù)式的值,體會代數(shù)式實際上是由計算程序反映的一種數(shù)量間的關系;

  4.將不同的數(shù)代入同一代數(shù)式,求出相應的值,能夠從所得代數(shù)式的值來判斷代數(shù)式所反映的規(guī)律,體會抽象的代數(shù)式與實際數(shù)量關系之間的關系.

  情感態(tài)度價值觀:

  5.通過代數(shù)式求值,感受數(shù)學中的程序化和抽象性,感受抽象的字母和具體的數(shù)之間的關系,進一步理解字母表示數(shù)的.意義,進一步增強符號感.

  教學重點

  理解代數(shù)式的意義,會求代數(shù)式的值

  教學難點

  利用代數(shù)式求值推斷代數(shù)式所反映的規(guī)律

  教學方法

  引導、探究法,即引導學生發(fā)現(xiàn)規(guī)律,使其在探究過程中掌握知識

  教學準備

  多媒體,或投影儀,膠片

  課時安排

  1課時

  教學過程

  Ⅰ.巧設情景問題,引入課題

 。蹘煟菸覀冊谔接懥舜鷶(shù)式之后,不僅能用字母與代數(shù)式表示數(shù)量關系,還能解釋一些代數(shù)式的實際背景或幾何意義.

  下面我們來看一組數(shù)值轉換機:(出示投影片§3.3A),大家想一想,做一做.

  下面是一組數(shù)值轉換機,寫出圖1的輸出結果,找出圖2的轉換步驟:

 。凵1]圖1的輸出結果是:6x-3.

  圖2的轉換步驟:-3、×6.

 。蹘煟葸@位同學書寫的跟你們的一樣嗎?

  [生齊聲]一樣.

 。蹘煟莺芎茫瑢W們寫得很正確,這兩個數(shù)值轉換機由于轉換的步驟不一樣,因此輸出的代數(shù)式也不一樣.

  我們已經(jīng)知道,表示數(shù)的字母具有任意性和確定性.當給出代數(shù)式時,如:6x-3,字母x可以取任何有理數(shù),當給出未知數(shù)的值時,如x=5時,求6x-3的值,這時,x只能是5這個確定的數(shù).

  今天我們就來研究第三節(jié):代數(shù)式求值.

 、.講授新課

  當我們把一些數(shù)輸入“數(shù)值轉換機”時,通過一個算法,相應得就會得到一些數(shù)值.下面大家來做一做,填下表.(出示投影片§3.3B)

  輸入-2-

  00.26

  4.5

  圖1輸出

  圖2輸出

  (學生計算,使他們認識到代數(shù)式求值就是轉換過程或是某種計算).

 。蹘煟荽蠹以谶\算時一定要注意:要按轉換的步驟進行.填出結果了嗎?……來同桌間相互檢查.××同學說說你的結果.

  [生]

 。蹘煟萃瑢W們做得都不錯,很好,下面,我們來比賽一下,看誰做得又對又快.(出示投影片§3.3C)

  議一議:

  填寫下表,并觀察下列兩個代數(shù)式的值的變化情況:

  (1)隨著n的值逐漸變大,兩個代數(shù)式的值如何變化?

  (2)估計一下,哪個代數(shù)式的值先超過100?

  (學生積極發(fā)言,大多同學填得對)

 。凵

  [師]很好,大家計算得又對又快,接下來我們分組討論:(1)、(2)問題,并總結.

  [生]隨著n的值逐漸變大,兩個代數(shù)式的值也逐漸變大.

  根據(jù)值的變化趨勢,我估計:n2的值先超過100.

 。蹘煟輰Γ鷶(shù)式的值是由其所含的字母取值所確定的,并隨字母取值的變化而變化,字母取不同的值,代數(shù)式的值可能不同,也可能相同.求出代數(shù)式的值后,根據(jù)值的變化趨勢還可以進行預測、推斷代數(shù)式所反映的規(guī)律.

  下面我們來做練習,進一步體會本節(jié)課的內(nèi)容:

 、.課堂練習

  (一)課本P99隨堂練習

  1.人體血液的質量約占人體體重的6%~7.5%.

  (1)如果某人體重是a千克,那么他的血液質量大約在什么范圍內(nèi)?

  (2)亮亮的體重是35千克,他的血液質量大約在什么范圍內(nèi)?

  (3)估計你自己的血液質量?

  答案:(1)6%a千克~7.5%a千克

  (2)亮亮的血液質量大約在2.1千克到2.625千克之間

  (3)讓學生估計計算一下

  2.物體自由下落的高度h(米)和下落時間t(秒)的關系,在地球上大約是:

  h=4.9t2,在月球上大約是:h=0.8t2.

  (1)填寫下表

  (2)物體在哪兒下落得快?

  (3)當h=20米時,比較物體在地球上和月球上自由下落所需的時間.

  答案:(1)

  (2)地球

  (3)通過表格,估計當h=20米時,t(地球)≈2秒,t(月球)≈5秒

  (二)試一試

  1.當a=-1,-0.5,0,0.5,1,1.5,2時,a2-a是正數(shù)還是負數(shù)?當|a|>2時,估計a2-a是正數(shù)還是負數(shù)?

  解:本題可列表進行比較.

  通過估計得:當|a|>2時,a2-a>0

  2.當a=-4,-3,-2,-1,1,2,3,4時,分別求出代數(shù)式a2+的值.你發(fā)現(xiàn)了什么?

  解:

  從計算的結果中發(fā)現(xiàn):當a取互為相反數(shù)的值時,a2+的值相等;當|a|>1時,a的絕對值變大,a2+的值也變大.

  Ⅳ.課時小結

  通過本節(jié)課的學習,我們會求代數(shù)式的值,對于一個代數(shù)式,它所含的字母取不同的值時,所得代數(shù)式的值,一般也不同,所以在求代數(shù)式的值時,要注意解題步驟:(1)代入.

  (2)計算.

 、.課后作業(yè)

  (一)看課本P98;P99的讀一讀.

  (二)課本習題3.31、2、3、4.

  (三)(1)預習內(nèi)容:P102~103

  (2)預習提綱

  1.項的系數(shù)和項的概念.

  2.進一步理解字母表示數(shù)的意義.

  Ⅵ.活動與探究

  1.下面是兩個數(shù)值轉換機,請你輸入五組數(shù)據(jù),比較兩個輸出的結果,發(fā)現(xiàn)了什么?

  根據(jù)上題的啟示,你能設計出兩個數(shù)值轉換機來驗證:a2-2ab+b2=(a-b)2嗎?

  過程:讓學生根據(jù)題意,求代數(shù)式的值.然后討論、總結,最后根據(jù)總結的規(guī)律與等式a2-2ab+b2=(a-b)2進行比較,設計兩個數(shù)值轉換機.

  結果:通過輸入數(shù)值,進行計算,發(fā)現(xiàn)了兩個輸出的結果相等,即:

  a2+b2+2ab=(a+b)2

  根據(jù)上題的啟示,設計出如下的兩個數(shù)值轉換機,使得:a2-2ab+b2=(a-b)2.

  2.已知=7,求的值.

  過程:讓學生審清題,不要盲目計算.從題中知:與正好是互為倒數(shù),整體代入,問題可輕松解決.

  結果:因為=7,所以:=.

  所以:原式=2×7-×=13.

  板書設計

  §3.3代數(shù)式求值

  一、“數(shù)值轉換機”求值三、課堂練習

  二、議一議

  四、課時小結

  規(guī)律五、課后作業(yè)

七年級數(shù)學上冊教案3

  學習目標:

  1、引導學生正確區(qū)分“線段、射線、直線”,掌握其表示方法,理解并能運用相關性質、公理。

  2、了解線段中點的概念,能借助刻度尺、圓規(guī)等畫圖工具畫一條線段等于已知線段。

  3、引領學生在感受美妙多變的圖形世界中,培養(yǎng)他們的觀察、分析、比較、探究等能力。

  重點與難點:了解線段中點的概念,能畫一條線段等于已知線段。發(fā)展學生有條理的思考,并能正確地表述。

  學習過程:

  一、課前預習導學

  1、如圖,點a、b、c、d在直線ab上,則圖中能用字母表示的共有條線段,有條射線,有條直線。

  2、從a到b地有①、②、③三條路可以走,每條路長分別為:,則第條路最短,另兩條路的長短關系是。

  第1題

  第2題

  3、如圖,若是中點,是中點,

 。1)若,_________;

 。2)若,_________。

  二、課堂學習1、議一議:

 。1)、在平面內(nèi)畫一個點,過這個點畫直線,能畫多少條?

 。2)、要在墻上釘牢一根木條,至少要用幾個釘子?為什么?

 。3)、如果平面內(nèi)有兩個點,過這兩個點畫直線,又能畫多少條?

  總結:“過兩點有______,并且____ ”

  思考:過平面上三點中的每兩點畫直線,可畫多少條?

  2、做一做:已知兩點a、b

  (1)畫線段ab(連接ab)

 。2)延長線段ab到點c,使bc=ab

  注意:我們把上圖中的點b叫做線段ac的。

  3、想一想:(1)如果點b是線段ac的中點,那么線段ab、bc、ac之間有怎樣的數(shù)量關系?與同學交流。

 。2)如何用符號語言表述中點的概念?

  總結:如果點b是線段ac的中點,那么;

  如果,那么b是線段ac的'中點。

  4、知識運用:

  例1、如圖,線段ab=8cm,c是ab的中點,點d在cb上,db=1.5cm.求線段cd的長度。

  練習:1、如圖ab=8cm,點c是ab的中點,

  點d是cb的中點,則ad=____cm

  2、如圖,下列說法,不能判斷點c是線段ab的中點的是( )

  a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab

  3、已知線段ab=8cm,點c是線段ab上任意一點,點m,n分別是線段ac與線段bc的中點,求線段mn的長。

  三、課堂檢測1.下列說法中,正確的是()

  a.射線oa和射線ao表示同一條射線;b.延長直線ab;

  c.經(jīng)過兩點有一條直線,并且只有一條直線;d.如果ac=bc,那么點c是線段ab的中點.

  2.如果要在墻上固定一根木條,你認為至少要釘子()

  a.1根b.2根c.3根d.4根

  3.如圖,若是中點,是中點,

 。1)若,,_________;(2)若,_________。

  4.如圖在平面內(nèi)有a、b、c、d四點,按要求畫圖。

 。1)畫直線ab、射線bc、線段bd

 。2)連結ac交bd于點o

 。3)畫射線cd并反向延長射線cd,

 。4)連結ad并延長至點e,使ad=de。

  四、課后作業(yè)

  1、下列說法中正確的是()

  a、連結兩點的線段叫做兩點之間的距離b、直線沒有端點,射線至少有一個端點

  c、經(jīng)過平面內(nèi)兩點有且只有一條直線d、運動場上的300m賽跑,表示起點和終點之間的距離是300米

  2、如圖,b是線段ad上一點,c是線段bd的中點,ad=10,bc=3,求線段cd、ab的長度

  3、如圖,線段ad=8,ab=cd=3,e、f分別是ab、cd的中點,求線段ef的長。

  4、已知線段mn=7,點p在直線mn上,且mp=3,則np= 。

  5、一條直線上有a,b,c三點,其中ab=4cm,bc=3cm,若o是線段ac的中點,求線段ob的長度。

七年級數(shù)學上冊教案4

  學習目標:

  1、知識技能:進一步理解正、負數(shù)及零的意義,熟練掌握正負數(shù)的表示方法,會用正、負數(shù)表示具有相反意義的量。毛

  2、數(shù)學思考:體會數(shù)學符號與對應的思想。

  3、情感態(tài)度:師生合作,聯(lián)系實際。培養(yǎng)學生的想象能力、理論聯(lián)系實際的能力、分析解決問題的能力,培養(yǎng)學生良好的個性品質和學習習慣。

  重點:進一步理解正、負數(shù)及零表示的量的意義。

  難點:理解負數(shù)及零表示的量的意義。

  課前準備

  卷尺或皮尺

  教學流程安排

  活動1、復習正、負數(shù) 從學生已有的知識出發(fā),為進一步學習做好知識準備。

  活動2、活動安排 使學生進入問題情境,加深對負數(shù)的理解。

  活動3、舉例說明 提高解決實際問題的能力。

  活動4、鞏固練習 掌握正數(shù)和負數(shù)。

  教學過程設計

  活動1

  1、 給出一組數(shù),請學生說說哪些是正數(shù)、負數(shù)。

  2、 學生舉例說明正、負數(shù)在實際中的應用。

  師生行為及設計意圖

  通過上一堂課的學習,讓一組同學任意給出一組數(shù),另一組同學找出哪些是正數(shù)?哪些是負數(shù)?正整數(shù)?負分數(shù)?復習正、負數(shù)的定義。

  活動2

  1、各組派一名同學進行如下活動:按老師的指令表演,看哪一組獲勝。

  2、分小組完成,用卷尺或皮尺量桌子的高度、桌面的長度和寬度,并將它們表示出來。(超出1米的部分用正數(shù)表示,不足1米的部分用負數(shù)表示。)

  師生行為

  1、老師說出指令:向前1步,向后3步,向前-2步,向后-2步。學生按老師的指令表演。

  2、各小組派一名同學匯報完成的情況。

  設計意圖

  通過學生的`活動,激發(fā)學生參與課堂教學的熱情,在活動中鞏固所學的知識。

  活動3

  問題展示

  1、 一個月內(nèi),小明體重增加2千克,小華體重減少1千克,小強體重無變化,寫出他們這個月的體重的增長值。

  2、 20xx年 商品進出口總額比上年的變化情況是:

  美國減少6.4%% , 德國增長1.3%,

  法國減少2.4% , 英國減少3.5%,

  意大利增長0.2 %, 中國增長7.5%,

  師生行為及設計意圖

  在學生已初步掌握新知識的前提下,由問題1 、2提高學生綜合解決實際問題的能力。

  活動4

  1、 P6 練習

  2、 總結:這堂課我們學習了那些知識?你能說一說嗎?

  3、 作業(yè) P7習題1 .1 4、7、8

  師生行為及設計意圖

  教師巡視、指導。學生交流、完成練習。對所學知識的鞏固是教學的一個重要環(huán)節(jié),這里的練習可以分散進行。

  教師引導學生回憶本節(jié)課所學內(nèi)容。學生回憶、交流。教師和學生一起補充完善。教師要努力使學生自己回憶、總結、梳理所學的知識,將所學的知識與以前學過的知識進行緊密聯(lián)結,完善認知結構。

  學生課后鞏固、提高、發(fā)展。

七年級數(shù)學上冊教案5

  教學目標

  1.利用10的乘方,進行科學記數(shù),會用科學記數(shù)法表示大于10的數(shù);(重點)

  2.能將用科學記數(shù)法表示的數(shù)還原為原數(shù).(重點)

  教學過程

  一、情境導入

  在悉尼舉行的國際天文學聯(lián)合會大會上,天文學家指出整個可見宇宙空間大約有700萬億億顆恒星,這個數(shù)字比地球上所有沙漠和海灘上的沙礫總和數(shù)量還要多.

  如果想在字面上表示出這一數(shù)字,需要在“7”后面加上22個“0”.即約為“70000000000000000000000”顆.

  生活中,我們還常會遇到一些比較大的數(shù).例如:

  1.據(jù)報載,20xx年我國將發(fā)展固定寬帶接入新用戶25000000戶.

  2.全球每年大約有577000000000000m3的水從海洋和陸地轉化為大氣中的水汽.

  3.拒絕“餐桌浪費”刻不容緩,據(jù)統(tǒng)計,全國每年浪費糧食總量約50000000000千克.

  像這些較大的數(shù)據(jù),書寫和閱讀都有一定的難度,那么有沒有這樣一種表示方法,使得這些大數(shù)易寫、易讀、易于計算呢?

  二、合作探究

  探究點一:用科學記數(shù)法表示大數(shù)

  例1 我區(qū)深入實施環(huán)境污染整治,關停和整改了一些化工企業(yè),使得每年排放的污水減少了167000噸,將167000用科學記數(shù)法表示為(  )

  A.167×103 B.16.7×104

  C.1.67×105 D.1.6710×106

  解析:根據(jù)科學記數(shù)法的表示形式,先確定a,再確定n,解此類題的關鍵是a,n的確定.167000=1.67×105,故選C.

  方法總結:科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的.值以及n的值.

  例2 20xx年3月發(fā)生了一件舉國悲痛的空難事件——馬航失聯(lián),該飛機上有中國公民154名.噩耗傳來后,我國為了搜尋生還者及找到失聯(lián)飛機,花費了大量的人力物力,已花費人民幣大約934千萬元.把934千萬元用科學記數(shù)法表示為______元(  )

  A.9.34×102 B.0.934×103

  C.9.34×109 D.9.34×1010

  解析:934千萬=9340000000=9.34×109.故選C.

  方法總結:對用帶“萬”“千萬”“億”等單位的數(shù)用科學記數(shù)法表示時,要化成不帶單位的數(shù),再用科學記數(shù)法表示.

  探究點二:將用科學記數(shù)法表示的數(shù)轉換為原數(shù)

  例3 已知下列用科學記數(shù)法表示的數(shù),寫出原來的數(shù):

  (1)2.01×104;(2)6.070×105;(3)-3×103.

  解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可;(3)將-3擴大1000倍即可.

  解:(1)2.01×104=20100;

  (2)6.070×105=607000;

  (3)-3×103=-3000.

  方法總結:將科學記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).

  三、板書設計

  科學記數(shù)法:

  (1)把大于10的數(shù)表示成a×10n的形式.

  (2)a的范圍是1≤|a|<10,n是正整數(shù).

  (3)n比原數(shù)的整數(shù)位數(shù)少1.

  教學反思

  本節(jié)課的特點是實際性強,和我們的日常生活聯(lián)系緊密,從學生的生活經(jīng)驗和已有的知識出發(fā),創(chuàng)設生動有趣的情境,引導學生開展觀察、討論、交流等活動.把學生被動接受知識的過程變?yōu)橹鲃犹骄堪l(fā)現(xiàn)的過程,使知識的發(fā)生與發(fā)展在每一位學生各自的體驗和自主學習中逐漸展現(xiàn).

七年級數(shù)學上冊教案6

  教學目標

  1.理解掌握有理數(shù)的減法法則,會將有理數(shù)的減法運算轉化為加法運算;

  2.通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數(shù)的減法運算,培養(yǎng)學生的運算能力.

  3.通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉化的辯證唯物主義思想.

  教學建議

  (一)重點、難點分析

  本節(jié)重點是運用有理數(shù)的減法法則熟練進行減法運算。解有理數(shù)減法的計算題需嚴格掌握兩個步驟:首先將減法運算轉化為加法運算,然后依據(jù)有理數(shù)加法法則確定所求結果的符號和絕對值.理解有理數(shù)的.減法法則是難點,突破的關鍵是轉化,變減為加.學習中要注意體會:小學遇到的小數(shù)減大數(shù)不會減的問題解決了,小數(shù)減大數(shù)的差是負數(shù),在有理數(shù)范圍內(nèi),減法總可以實施.

 。ǘ┲R結構

  (三)教法建議

  1.教師指導學生閱讀教材后強調(diào)指出:由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉化為加法.有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決.

  2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則.在使用法則時,注意被減數(shù)是永不變的

  3.因為任何減法運算都可以統(tǒng)一成加法運算,所以我們沒有必要再規(guī)定幾個帶有減法的運算律,這樣有利于知識的鞏固和記憶.

  4.注意引入負數(shù)后,小的數(shù)減去大的數(shù)就可以進行了,其差可用負數(shù)表示。

七年級數(shù)學上冊教案7

  教學目標

  1.進一步掌握有理數(shù)的運算法則和運算律;

  2.使學生能夠熟練地按有理數(shù)運算順序進行混合運算;

  3.注意培養(yǎng)學生的運算能力.

  教學重點和難點

  重點:有理數(shù)的混合運算.

  難點:準確地掌握有理數(shù)的.運算順序和運算中的符號問題.

  課堂教學過程設計

  一、從學生原有認知結構提出問題

  1.計算(五分鐘練習):

  (5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;

  (13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;

  (17)(-2)4; (18)(-4)2; (19)-32; (20)-23;

  (24)3.4×104÷(-5).

  2.說一說我們學過的有理數(shù)的運算律:

  加法交換律:a+b=b+a;

  加法結合律:(a+b)+c=a+(b+c);

  乘法交換律:ab=ba;

  乘法結合律:(ab)c=a(bc);

  乘法分配律:a(b+c)=ab+ac.

  二、講授新課

  前面我們已經(jīng)學習了有理數(shù)的加、減、乘、除、乘方等運算,若在一個算式里,含有以上的混合運算,按怎樣的順序進行運算?

  1.在只有加減或只有乘除的同一級運算中,按照式子的順序從左向右依次進行.

  審題:(1)運算順序如何?

  (2)符號如何?

  說明:含有帶分數(shù)的加減法,方法是將整數(shù)部分和分數(shù)部分相加,再計算結果.帶分數(shù)分成整數(shù)部分和分數(shù)部分時的符號與原帶分數(shù)的符號相同.

七年級數(shù)學上冊教案8

  【學習目標】:

  1、會用尺規(guī)畫一條線段等于已知線段;

  2、會比較兩條線段的長短;

  3、理解線段中點的 概念,了解“兩點之間,線段最短”的性質。

  【學習重點】:線段 的中點概念,“兩點之間,線段最短”的性質是重點;

  【學習難點】:畫一條線段等于已知線段是難點。

  【導學指導】

  一、溫故知新

  1、過A、B、C三點作直線,小 明說有三條,小穎說有一條,小林說不是一條就是三條,你認為______的說法是對的。

  二 、自主學習

  問題:現(xiàn)有一根長木棒,如何從它上面截下一段,使截下的木棒等于另一根木棒的長 ?

  上面的實際問題可以轉化為下面的數(shù)學問題:

  2、比較兩條線段的長短

  兩條線段可能相等,也可能不相等,那么怎樣比較兩條線段的長短呢?

  我們先來回答下面的問題。

  怎樣比較兩個同學的身高?

  一是用尺子測量;二是站在一起比(腳在同一高度)。

  如果把兩個同學看成兩條線段,那么比較兩條線段就有兩種方法。

  (1)度量法:用刻度尺分別量出兩條線段的長度從而進行比較。

  (2)把一條線段移到另一條線段上,使一端對齊,從而進行比較,我們稱為疊合法。

  練習題

  一、填空

  1.我們在用玩具槍瞄準時,總是用一只眼對準準星和目標,用數(shù)學知識解釋為__________________.

  2. 三條直線兩兩相交,則交點有_______________個.

  二、下列說法中正確的是( )

  A、兩點之間線段最短

  B、若兩個角的頂點重合,那么這兩個角是對頂角

  C、一條射線把一個角分成兩個角,那么這條射線是角的平分線

  D、過直線外一點有兩條直線平行于已知直線

  9、下列說法:①平角就是一條直線;②直線比射線線長;③平面內(nèi)三條互不重合的直線的公共點個數(shù)有0個、1個、2個或3個;④連接兩點的線段叫兩點之間的距離;⑤兩條射線組成的'圖形叫做角;⑥一條射線把一個角分成兩個角,這條射線是這個角的角平分線,其中正確的有( )

  A、0個B、1個C、2個D、3個

  同步四維訓練

  知識一:直線的性質

  3.在開會前,工作人員進行會場布置,在主席臺上由兩人拉著一條繩子,然后以“準繩”為基準擺放茶杯,這樣做的理由是(B )

  A.兩點之間線段最短

  B.兩點確定一條直線

  C.垂線段最短

  D.過一點可以作無數(shù)條直線

  知識點二:線段的作法及比較

  4.在跳繩比賽中,要在兩條繩子中挑出較長的一條用于比賽,選擇的方法是(A )

  A.把兩條繩子的一端對齊,然后拉直兩條繩子,另一端在外面的即為長繩

  B.把兩條繩子接在一起

  C.把兩條繩子重合觀察另一端的情況

  D.沒有辦法挑選

七年級數(shù)學上冊教案9

  【學習目標】

  1、能根據(jù)題意用字母表示未知數(shù),然后分析出等量關系,再根據(jù)等量關系列出方程。

  2、理解什么是一元一次方程。

  3、理解什么是方程的解及解方程,學會檢驗一個數(shù)值是不是方程的解的方法。

  【重點難點】

  體會找等量關系,會用方程表示簡單實際問題,能驗證一個數(shù)是否是一個方程的解。

  【導學指導】

  一、溫故知新

  1:前面學過有關方程的一些知識,同學們能說出什么是方程嗎?

  答:叫做方程。

  一元一次方程復習

  注意:我們在解一元一次方程時,既要學會按部就班(嚴格按步驟)地解方程,又要善于認真觀察方程的結構特征,靈活采用解方程的一些技巧,隨機應變(靈活打亂步驟)解方程,能達到事半功倍的效果.對于一般解題步驟與解題技巧來說,前者是基礎,后者是機智,只有真正掌握了一般步驟,才能熟能生巧.

  解一元一次方程常用的技巧有:

  (1)有多重括號,去括號與合并同類項可交替進行

  (2)當括號內(nèi)含有分數(shù)時,常由外向內(nèi)先去括號,再去分母

  (3)當分母中含有小數(shù)時,可根據(jù)xx分數(shù)的基本性質xx把分母化成整數(shù)

  (4)運用整體思想,即把含有未知數(shù)的代數(shù)式看作整體進行變形

  (三)實際問題與一元一次方程

  1.用一元一次方程解決實際問題的一般步驟是:

  (1)審題,搞清已知量和待求量,分析數(shù)量關系. (審題,尋找等量關系)

  (2)根據(jù)數(shù)量關系與解題需要設出未知數(shù),建立方程;

  (3)解方程;

  (4)檢查和反思解題過程,檢驗答案的正確性以及是否符合題意,并作答.

  2.用一元一次方程解決實際問題的典型類型

  (1)數(shù)字問題:①數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c則這個三位數(shù)表示為xx100a+10b+cxx(其中a、b、c均為整數(shù),且1≤a≤9,0≤b≤9,0≤c≤9).

 、谟靡粋字母表示連續(xù)的自然數(shù)、奇數(shù)、偶數(shù)等規(guī)律數(shù).

  (2)和、差、倍、分問題:關鍵詞是“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率,哪個量比哪個量……”

  《第三章一元一次方程》精編導學

  3.1從算式到方程

  【學習目標】

  1、知道什么是方程,什么是一元一次方程;

  2、在實際問題中,能夠找到并利用題中的等量關系列出方程.

  【重點難點】

  重點1.歸納方程、一元一次方程的概念;

  2.分析實際問題中的數(shù)量關系,利用其中的相等關系列出方程。

  難點:能夠用方程解決一些實際問題。

  【學法指導】

自主探究、合作學習

  【自主學習,基礎過關】

  1. (1)3+b=2b+1 (2)4+x=7

  (3) 0.7x=1400 (4)2x-2=6

  請大家觀察上面4個式子有什么共同特點?

  從而得到:xxxxxxxxxxxxxxx的等式叫做方程。

  2.閱讀課本78頁問題,你能用算術方法解答嗎?試一試。

  若設A,B兩地間的路程是x km?則從A地到B地,卡車用了小時,客車用了小時。根據(jù)題意,可列出等式嗎?

  還有其他的解法嗎?試著改變一種設法。

  我的疑惑

  【合作探究,釋疑解惑】

  1.根據(jù)下面實際問題中的數(shù)量關系,設未知數(shù)列出方程:

 、儆靡桓L為48cm的鐵絲圍成一個正方形,正方形的邊長為多少?

 、谀承E藬(shù)占全體學生數(shù)的52%,比男生多80人,這個學校有多少學生?

 、劬毩暠久勘0.8元,小明拿了10元錢買了若干本,還找回4.4元。問:小明買了幾本練習本?

  小結:像上面①、②、③中列出的方程,它們都含有xxxxx個未知數(shù)(元),未知數(shù)的次數(shù)都是xxxxxxx,這樣的方程叫做一元一次方程。

  (即方程的一邊或兩邊含有未知數(shù))

  【檢測反饋,學以致用】

  1.根據(jù)條件列出等式:

 、俦萢大5的數(shù)等于8:

 、谀硵(shù)的'30%比它的2倍少34:

  ③27與x的差的一半等于x的4倍:xxxxxxxxx

 、鼙萢的3倍小2的數(shù)等于a與b的和:

  2.列方程解決實際問題

  (1)用一根長24cm的鐵絲圍成一個長方形,使它的長是寬的1.5倍,長方形的長,寬各應是多少?

  (2)小芳種了一株樹苗,開始時樹苗高為40厘米,栽種后每周升高約15厘米,大約幾周后樹苗長高到1米?

  【總結提煉,知識升華】

  1、學習收獲

  2、需要注意的問題

  【課后訓練,鞏固拓展】

  1、必做題:教科書80頁練習1,2,3,4題;

  2、懸賞題(2個優(yōu))

  雞兔同籠,上有20頭,下有52足,請問雞兔各有多少只?

七年級數(shù)學上冊教案10

  教學內(nèi)容:

  第89頁例3、例4,90頁課堂活動,練習二十二第5、6、7、8題。

  教學目標:

  1.在熟悉的生活情境中,進一步理解負數(shù)的意義,會用正負數(shù)表示相反意義的量。

  2.感受負數(shù)在生活中的廣泛應用,會解釋生活中的一些負數(shù)的實際意義。

  教學重點:

  會用正、負數(shù)表示相反意義的量。

  教學難點:

  會用正、負數(shù)解決生活中的.實際問題。

  教具準備:

  多媒體課件

  教學方法:

  合作交流、師生互動

  教學過程:

  一、游戲激趣

  教師:我們來玩?zhèn)游戲輕松一下,游戲名叫《我反,我反,我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。誰先試一試?

  向上看 向前走200米 電梯上升15層 我在銀行存入了500元

  二、復習舊知

  我們已經(jīng)學習了負數(shù),你能舉幾個負數(shù)的例子嗎?

  通過前面內(nèi)容的學習,你還知道哪些知識?

  三、學習新知

  1.教學例3。

  出示例3的情境:小明向東走200米,小軍向西走200米。

  教師問:你準備怎樣來表示這兩個不同意思的量?

  學生1:向東走200米記作+200米,向西走200米就記作-200米。

  學生2:向西走200米記作+200米,向東走200米就記作-200米。

  教師對這兩種記法都應給予肯定。

  學生獨立試一試

  (1)如果汽車向正北方向行駛50m記作+50m,那么汽車向正南方向行駛100m該怎樣記?

  (2)如果體重減少2kg記作-2kg,那么+5kg表示什么?

  學生完成后,集體訂正并小結:由此可見,我們可以用正數(shù)、負數(shù)來表示相反意義的量。

  (3)練習:課堂活動第2題:說出表中正數(shù)、負數(shù)表示的意義。

  項目 父母工資 電話費 父母獎金 水、電、氣費 伙食費

  收支情況(元) 4500 -130 1000 -280 -1750

  2.教學例4。

  教師:其實,正、負數(shù)在生活中有著廣泛的應用。如某農(nóng)用物資商場把下半年的盈虧情況做了一個表:(出示例4)

  月份 7月 8月 9月 10月 11月 12月

  盈虧情況(元) +6500 -2700 0 -750 +9500 +16700

  教師:表中的正數(shù),負數(shù)各表示什么意思?(正數(shù)表示盈利,負數(shù)表示虧損。)

  教師:從表中你獲得了哪些信息?

  學生小組內(nèi)交流,然后全班匯報。

  教師:盈和虧也是兩個相反意義的量,我們用正數(shù)、負數(shù)來表示,簡潔而準確。

  3.討論生活中的負數(shù)。

  教師出示存折和電梯圖上的負數(shù),讓學生講講表示的是什么意思。

  教師:存折上的-800表示什么意思?

  學生:取出800元記作-800;存入了1200元記作1200元,還可以記作+1200元

  電梯里的1和-1表示什么意思?(以地面為界線,地面以上一層我們用1或+1來表示,-1就表示地下一層)

  老師現(xiàn)在要到33層應該按幾啊?要到地下3層呢?

  四、課堂練習

  1.下圖每段表示1m,小麗剛開始的位置在0處。

  (1)小麗從0處向東行5m表示+5m,那么她從0點向西行4m表示為( )

  (2)如果小麗的位置是+8m,說明她是從0點向( )行了( )m。

  (3)如果小麗的位置是-6,說明她是從0點向( )行了( )m。

  (4)如果小麗先向西行6m,再向東行9m,這時小麗的位置表示為( )m。

  (5)如果小麗先向東行3m,再向西行7m,這時小麗的位置表示為( )m。

  2.如果順時針方向旋轉90°記作+90°,那么逆時針方向旋轉90°記作( )。

  3.如果-20分表示比平均分低20分,那么+15表示( )

  4.如果比規(guī)定任務多做5個記作+5個,那么-5表示( )

  5.2.如果在銀行存入10000元記作+10000,那么-5000表示( )。

  五、自學“你知道嗎?”

  學生閱讀教科書92頁內(nèi)容,說說有什么收獲?

  六、課堂小結

  通過今天的學習,你有什么收獲?

  七、課堂作業(yè)

  練習二十二第6、7題。

  家庭作業(yè):90頁課堂活動第3題,練習二十二第5、8題

  板書設計:

  認識具有相反意義的量及其簡單應用

  向東走200米記作+200米,向西走200米就記作-200米

  正數(shù)、負數(shù)來表示相反意義的量。

七年級數(shù)學上冊教案11

  一、教學目標

  1。理解一個數(shù)平方根和算術平方根的意義;

  2。理解根號的意義,會用根號表示一個數(shù)的平方根和算術平方根;

  3。通過本節(jié)的訓練,提高學生的邏輯思維能力;

  4。通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關系,激發(fā)學生探索數(shù)學奧秘的興趣。

  二、教學重點和難點

  教學重點:平方根和算術平方根的概念及求法。

  教學難點:平方根與算術平方根聯(lián)系與區(qū)別。

  三、教學方法

  講練結合。

  四、教學手段

  多媒體

  五、教學過程

  (一)提問

  1。已知一正方形面積為50平方米,那么它的邊長應為多少?

  2。已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?

  3。一只容積為0。125立方米的正方體容器,它的棱長應為多少?

  這些問題的共同特點是:已知乘方的結果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學習的下面作一個小練習:填空

  1。()2=9;2。()2 =0。25;

  5。()2=0。0081。

  學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學時應注意糾正。

  由練習引出平方根的概念。

  (二)平方根概念

  如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。

  用數(shù)學語言表達即為:若x2=a,則x叫做a的平方根。

  由練習知:±3是9的平方根;

  ±0。5是0。25的平方根;

  0的平方根是0;

  ±0。09是0。0081的平方根。

  由此我們看到3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

 。ǎ2=—4

  學生思考后,得到結論此題無答案。反問學生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結論,負數(shù)是沒有平方根的下面總結一下平方根的性質(可由學生總結,教師整理)。

  (三)平方根性質

  1。一個正數(shù)有兩個平方根,它們互為相反數(shù)。

  2。0有一個平方根,它是0本身。

  3。負數(shù)沒有平方根。

 。ㄋ模╅_平方

  求一個數(shù)a的`平方根的運算,叫做開平方的運算。

  由練習我們看到3與—3的平方是9,9的平方根是3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結果是兩個。

 。ㄎ澹┢椒礁谋硎痉椒

  一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作,其中讀作“二次根號”,讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。

  練習:1。用正確的符號表示下列各數(shù)的平方根:

 、26②247③0。2④3⑤

  解:①26的平方根是

  ②247的平方根是

 、0。2的平方根是

 、3的平方根是

 、莸钠椒礁

七年級數(shù)學上冊教案12

  教學目標

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;

  2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

  3, 體驗分類是數(shù)學上的常用處理問題的方法。

  教學難點 正確理解分類的標準和按照一定的標準進行分類

  知識重點 正確理解有理數(shù)的概念

  教學過程

  探索新知

  在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).

  問題1:觀察黑板上的9個數(shù),并給它們進行分類.

  學生思考討論和交流分類的情況.

  學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵.

  例如,

  對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))

  通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),”。

  按照書本的'說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:

  按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

  學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

  練一練

  1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.

  2,教科書第10頁練習.

  此練習中出現(xiàn)了集合的概念,可向學生作如下的說明.

  把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號:。

  思考:

  問題1:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?

  創(chuàng)新探究

  問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?

  教學時,要讓學生總結已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇,使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。

  小結與作業(yè)

  到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。

七年級數(shù)學上冊教案13

  教學目標

  1 知識與技能:

  使學生理解和掌握整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。

  2 過程與方法:

  通過觀察、操作、討論的活動,使學生經(jīng)歷探究口算方法的全過程。

  3 情感態(tài)度與價值觀:

  讓學生感受數(shù)學與生活的聯(lián)系,培養(yǎng)學生用數(shù)學知識解決簡單實際問題的能力。

  教學重難點

  1 教學重點:

  掌握用整十數(shù)除的口算方法。

  2 教學難點:

  理解用整十數(shù)除的口算算理。

  教學工具

  多媒體設備

  教學過程

  1 復習引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2 新知探究

  1、教學例1

  有80面彩旗,每班分20面,可以分給幾個班?

 。1)提出問題,尋找解決問題的方法。

  師:從中你能獲取什么數(shù)學信息?

  師:怎樣解決這個問題?

 。2)列式 80÷20

 。3)學生獨立探索口算的方法

  師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。

  學生匯報:

  預設學生可能會有以下兩種口算方法:

  A.因為20×4=80,所以80÷20=4 這是想乘算除

  B.因為8÷2=4, 所以80÷20=4 這是根據(jù)計數(shù)單位的組成

  為什么可以不看這個“0”? ( 80÷20可以想“8個十里面有幾個二十?”)

  這樣我們就把除數(shù)是整十數(shù)的轉化為我們已經(jīng)學過的表內(nèi)除法。

 。4)師小結:

  同學們有的用乘法算除法的,也有用表內(nèi)除法來想的,都很好,那么你喜歡哪種方法呢?

  把你喜歡的方法說給同桌聽。

 。5)檢查正誤

  師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)

 。6)用剛學會的方法再次口算,并與同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

 。7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。

  生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。

  師:誰想把你的方法跟大家說一說。

  預設:83接近于80,80除以20等于 4,所以83除以20約等于4。

  19接近于20,80除以20等于 4,所以80除以19約等于4。

  2、教學例2

 。1)創(chuàng)設情境引出問題

  師:誰會解決這個問題?

  150÷50

 。2)小組討論口算方法

 。3)你是怎么這樣快就算出的呢?

  A.因為15÷5=3,所以150÷50=3。

  B.因為3個50是150,所以150÷50=3。

  這一題跟剛才分彩旗的`口算方法有不同嗎?

  都是運用想乘算除和表內(nèi)除法這兩種方法來口算的。

  師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。

  口算練習:150÷30 240÷80 300÷50 540÷90

  3、估算

 。1)探計估算的方法

  師:你能知道題目要求我們做什么嗎?

  你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。

 。2)誰想把你的方法跟大家說一說。

 。3)總結方法:把被除數(shù)和除數(shù)都看作與原數(shù)比較接近的整十數(shù)再用口算方法算。

 。4)判斷估算是否正確:122÷60=2 349÷50≈8 為什么不正確?

  3 鞏固提升

  1、獨立口算

  觀察每道題,怎樣很快說出下面除法算式的商?

  如果估算的話把誰估成多少。

  2、算一算、說一說。

 。1)除數(shù)不變,被除數(shù)乘幾,商也乘幾。

  (2)被除數(shù)不變,除數(shù)乘幾,商反而除以幾。

  3、解決問題

 。1)一共要寄240本書,每包40本。要捆多少包?

  你能找到什么條件、問題。你會解決嗎?

  240÷40 = 6(包)

  答:要捆6包。

 。2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。

  出示條件:一共有120個小故事,每天看1個故事。

  問題:看完這本書大約需要幾個月?

  問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?

  120÷30 = 4(個)

  答:看完這本書大約需要4個月。

  課后小結

  這節(jié)課你有什么收獲?還有什么問題?

  本節(jié)課學習了整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。

  板書

  口算除法

  有80面彩旗,每班分20面,可以分給幾個班?

  80÷20=

七年級數(shù)學上冊教案14

  教學目標:

  1.通過對“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念,能利用正負數(shù)正確表示具有相反意義的量(規(guī)定了向指定方向變化的量);

  2.進一步體驗正負數(shù)在生產(chǎn)生活中的廣泛應用,提高解決實際問題的能力.

  教學重點:

  深化對正負數(shù)概念的理解.

  教學難點:

  正確理解和表示向指定方向變化的量.

  教與學互動設計:

  (一)知識回顧和理解

  通過對上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著具有兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.

  [問題1]:“零”為什么既不是正數(shù)也不是負數(shù)呢?

  學生思考討論,借助舉例說明.

  參考例子:用正數(shù)、負數(shù)和零表示零上溫度、零下溫度和零度.

  思考“0”在實際問題中有什么意義?

  歸納“0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.

  如:水位不升不降時的水位變化,記作:0 m.

  [問題2]:引入負數(shù)后,數(shù)按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?

  (二)深化理解,解決問題

  [問題3]:(課本P3例題)

  【例1】(1)一個月內(nèi),小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;

  【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:

  美國減少6.4%,德國增長1.3%,

  法國減少2.4%,英國減少3.5%,

  意大利增長0.2%,中國增長7.5%.

  寫出這些國家這一年商品進出口總額的增長率.

  解后語:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數(shù)來表示增長的量.類似的'還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數(shù)表示它們.

  鞏固練習

  1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.

  2.讓學生再舉出一些常見的具有相反意義的量.

  3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:

  中國減少866,印度增長72,

  韓國減少130,新西蘭增長434,

  泰國減少3247,孟加拉減少88.

  (1)用正數(shù)和負數(shù)表示這六國1990~1995年平均森林面積的增長量;

  (2)如何表示森林面積減少量,所得結果與增長量有什么關系?

  (3)哪個國家森林面積減少最多?

  (4)通過對這些數(shù)據(jù)的分析,你想到了什么?

  閱讀與思考

  (課本P6)用正數(shù)和負數(shù)表示加工允許誤差.

  問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?

  2.你知道還有哪些事件可以用正負數(shù)表示允許誤差嗎?請舉例.

  (三)應用遷移,鞏固提高

  1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5 ℃,則乙冷庫的溫度是.

  2.一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?

  3.摩托車廠本周計劃每天生產(chǎn)250輛摩托車,由于工人實行輪休,每天上班的人數(shù)不一定相等,實際每天生產(chǎn)量(與計劃量相比)的增減值如下表:

  星期一二三四

  增減-5 +7 -3 +4

  根據(jù)上面的記錄,問:哪幾天生產(chǎn)的摩托車比計劃量多?星期幾生產(chǎn)的摩托車最多,是多少輛?星期幾生產(chǎn)的摩托車最少,是多少輛?

  類比例題,要求學生注意書寫格式,體會正負數(shù)的應用.

  (四)課時小結(師生共同完成)

七年級數(shù)學上冊教案15

  教學目標:

  知識與技能:1.知道去括號的意義;2.會去括號,并能利用去括號的法則進行簡單的計算。

  過程與方法:經(jīng)歷探究去括號法則的過程,培養(yǎng)學生的觀察能力、歸納能力。

  情感態(tài)度與價值觀:根據(jù)乘法對加法的'分配律理解去括號法則的正確性。

  教學重點:1.去括號的法則;2.利用去括號法則進行簡單計算。

  教學難點:括號前面有系數(shù)時,注意括號中各項都要與系數(shù)相乘。

  教材分析:本節(jié)是本章的重點內(nèi)容。也是以后學習整式乘除、分式運算、一次方程和函數(shù)等知識的基礎,同時也為其他學科的學習奠定基礎。故在學習過程中重視對學生基礎知識和基本技能的訓練,關注學生對知識發(fā)生發(fā)展過程的體驗和應用能力的培養(yǎng)。

  教學方法:師生互動法

  教具:電腦、投影儀、課件資源、投影片

  課時安排:1課時

  教學過程:

  板書設計:

  6.3去括號

  a+(b+c)=a+b+c例1:

  a-(b+c)=?

  去括號法則:略例2:

  教學反思:本節(jié)課采用加法結合律與實例相結合的方式導入,經(jīng)歷對同一問題的數(shù)量關系的不同表示方法,讓學生更形象更具體地體會去括號法則的合理性,整個過程以學生為主,讓學生觀察思考合作交流來發(fā)現(xiàn)并親身體會去括號法則的過程和數(shù)與式之間的關系,收到效果較好。但在教學中還應給予學生較多的思考反思總結的時間效果會更好些。

【七年級數(shù)學上冊教案】相關文章:

數(shù)學七年級上冊教案04-16

[優(yōu)]數(shù)學七年級上冊教案06-13

七年級上冊數(shù)學教案12-16

七年級數(shù)學上冊教案01-11

七年級上冊數(shù)學教案01-19

七年級數(shù)學上冊教案06-13

七年級數(shù)學上冊教案(精選)06-14

數(shù)學新七年級上冊教案模板01-24

七年級上冊數(shù)學教學教案06-01

七年級數(shù)學上冊教案[精選]06-16