八年級(jí)數(shù)學(xué)上冊(cè)教案
作為一名專(zhuān)為他人授業(yè)解惑的人民教師,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么應(yīng)當(dāng)如何寫(xiě)教案呢?下面是小編為大家收集的八年級(jí)數(shù)學(xué)上冊(cè)教案,希望對(duì)大家有所幫助。
八年級(jí)數(shù)學(xué)上冊(cè)教案1
教學(xué)目標(biāo):
(一)教學(xué)知識(shí)點(diǎn):梯形的判別方法.
(二)能力訓(xùn)練要求
1.經(jīng)歷探索梯形的判別條件的過(guò)程,在簡(jiǎn)單的操作活動(dòng)中發(fā)展學(xué)生的'說(shuō)理意識(shí).
2.探索并掌握“同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形”這一判別條件.
(三)情感與價(jià)值觀要求
1.通過(guò)探索梯形的判別條件,發(fā)展學(xué)生的說(shuō)理意識(shí),主動(dòng)探究的習(xí)慣
2.解決梯形問(wèn)題中,滲透轉(zhuǎn)化思想
教學(xué)重點(diǎn):梯形的判別條件
教學(xué)難點(diǎn):解決梯形問(wèn)題的基本方法
教學(xué)過(guò)程:
一、引入課題
上節(jié)課我們研究了特殊的梯形——等腰梯形的概念及其性質(zhì),下面我們來(lái)共同回憶一下:什么樣的梯形是等腰梯形?等腰梯形有什么性質(zhì)?
1.兩腰相等的梯形是等腰梯形
2.等腰梯形同一底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
怎樣判定等腰梯形呢?我們這節(jié)課就來(lái)探討等腰梯形的判定
二、講授新課
判定:同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形
問(wèn):我們能說(shuō)明這種判定方法的正確性嗎?
如圖,在梯形ABCD中,AD∥BC,∠B=∠C
求證:梯形ABCD是等腰梯形
法一:證明:把腰DC平移到AE的位置,這時(shí),四邊形AECD是平行四邊形,則AE∥CD
AE=CD,因?yàn)锳E∥CE,所以∠AEB=∠C
又因?yàn)椤螧=∠C,所以∠AEB=∠B
由在一個(gè)三角形中,等角對(duì)等邊,得
AB=AE,所以AB=CD
因此梯形ABCD是等腰梯形
八年級(jí)數(shù)學(xué)上冊(cè)教案2
教學(xué)目標(biāo):完全平方公式的推導(dǎo)及其應(yīng)用;完全平方公式的幾何解釋?zhuān)灰晫W(xué)生對(duì)算理的理解,有意識(shí)地培養(yǎng)學(xué)生的思維條理性和表達(dá)能力.
教學(xué)重點(diǎn)與難點(diǎn):完全平方公式的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、幾何解釋?zhuān)`活應(yīng)用.
教學(xué)過(guò)程:
一、提出問(wèn)題,學(xué)生自學(xué)
問(wèn)題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫(xiě)成什么樣的形式呢?(a+b)2的運(yùn)算結(jié)果有什么規(guī)律?計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?
。1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
。2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
學(xué)生討論,教師歸納,得出結(jié)果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推廣:結(jié)果中有兩個(gè)數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個(gè)數(shù)乘積的二倍(1)(2)之間只差一個(gè)符號(hào).
推廣:計(jì)算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:兩數(shù)和(或差)的.平方,等于它們的平方和,加(或減)它們的積的2倍.
二、幾何分析:
你能根據(jù)圖(1)和圖(2)的面積說(shuō)明完全平方公式嗎?
圖(1)大正方形的邊長(zhǎng)為(a+b),面積就是(a+b)2,同時(shí),大正方形可以分成圖中①②③④四個(gè)部分,它們分別的面積為a2、ab、ab、b2,因此,整個(gè)面積為a2+ab+ab+b2=a2+2ab+b2,即說(shuō)明(a+b)2=a2+2ab+b2. 請(qǐng)點(diǎn)擊下載Word版完整教案:新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案教案《新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案》,來(lái)自網(wǎng)!
八年級(jí)數(shù)學(xué)上冊(cè)教案3
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【問(wèn)題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識(shí)遷移】
2.計(jì)算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的.規(guī)律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.
三、隨堂練習(xí),鞏固深化
課本P170練習(xí)第1、2題.
【探研時(shí)空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過(guò)來(lái)寫(xiě),就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運(yùn)用公式因式分解時(shí),要注意:
(1)每個(gè)公式的形式與特點(diǎn),通過(guò)對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來(lái)確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.
五、布置作業(yè),專(zhuān)題突破
八年級(jí)數(shù)學(xué)上冊(cè)教案4
教學(xué)目標(biāo):
1、 理解運(yùn)用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。
3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。
教學(xué)重點(diǎn):
運(yùn)用平方差公式分解因式。
教學(xué)難點(diǎn):
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。
教學(xué)案例:
我們數(shù)學(xué)組的觀課議課主題:
1、關(guān)注學(xué)生的合作交流
2、如何使學(xué)困生能積極參與課堂交流。
在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:
1、整式乘法中的平方差公式是___,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到_____,如何用語(yǔ)言描述?
2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫(xiě)出分解過(guò)程,若不能,說(shuō)出為什么?
、-x2+y2 ②-x2-y2 ③4-9x2
、 (x+y)2-(x-y)2 ⑤ a4-b4
3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的步驟是什么?
師巡回指導(dǎo),生自主探究后交流合作。
生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。
生展示自學(xué)成果。
生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。
生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。
生5: a4-b4可分解為(a2+b2)(a2-b2)
生6:不對(duì),a2-b2 還能繼續(xù)分解為a+b)(a-b)
師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的'形式,另因式分解必須分解到不能再分解為止。……
反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:
(1) 我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:
下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。
(2) 教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類(lèi)型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫(xiě)一些簡(jiǎn)單的,像④、⑤ 可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。
我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試!鄙珠_(kāi)始緊張地練習(xí)……下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……?磥(lái),以后上課不能單聽(tīng)學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。
確實(shí),“學(xué)海無(wú)涯,教海無(wú)邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問(wèn)題,“沒(méi)有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……
八年級(jí)數(shù)學(xué)上冊(cè)教案5
學(xué)習(xí)目標(biāo):
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過(guò)程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
重點(diǎn)、難點(diǎn):
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問(wèn)題。
2.難點(diǎn):理解方差公式
一.學(xué)前準(zhǔn)備:
問(wèn)題農(nóng)科院計(jì)劃為某地選擇合適的甜玉米種子.選擇種子時(shí),甜玉米的產(chǎn)量和產(chǎn)量的.穩(wěn)定性是農(nóng)科院所關(guān)心的問(wèn)題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗(yàn)田進(jìn)行試驗(yàn),得到各試驗(yàn)田每公頃的產(chǎn)量(單位:t)如表所示。
甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41
乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
根據(jù)這些數(shù)據(jù)估計(jì),農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
來(lái)衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小。
在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
二、歸納:
(1)研究離散程度可用
(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
(3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
(4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
例題:在一次芭蕾舞比賽中,甲乙兩個(gè)芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
甲163 164 164 165 165 166 166 167
乙163 165 165 166 166 167 168 168
哪個(gè)芭蕾舞團(tuán)的女演員的身高比較整齊?
三.自我檢查:
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過(guò)計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
八年級(jí)數(shù)學(xué)上冊(cè)教案6
第11章平面直角坐標(biāo)系
11。1平面上點(diǎn)的坐標(biāo)
第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)
教學(xué)目標(biāo)
【知識(shí)與技能】
1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。
2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫(xiě)出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。
3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來(lái)描述點(diǎn)的位置。
【過(guò)程與方法】
1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。
2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來(lái)描述物體的位置。
【情感、態(tài)度與價(jià)值觀】
通過(guò)引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問(wèn)題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
認(rèn)識(shí)平面直角坐標(biāo)系,寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。
【難點(diǎn)】
理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境、導(dǎo)入新知
師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說(shuō)?
生甲:我在第3排第5個(gè)座位。
生乙:我在第4行第7列。
師:很好!我們買(mǎi)的電影票上寫(xiě)著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來(lái)。
二、合作探究,獲取新知
師:在以上幾個(gè)問(wèn)題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來(lái)表示這個(gè)物體
的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來(lái)表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢?
生:3排5號(hào)。
師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰(shuí)來(lái)說(shuō)說(shuō)我們應(yīng)該怎樣表示一個(gè)物體的位置呢?
生:用一個(gè)有序的實(shí)數(shù)對(duì)來(lái)表示。
師:對(duì)。我們學(xué)過(guò)實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來(lái)呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為
正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。
師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來(lái)表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫(huà)一個(gè)平面直角坐標(biāo)系。
學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。
教師邊操作邊講解:
如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說(shuō)P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫(xiě)在前,縱坐標(biāo)寫(xiě)在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過(guò)這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過(guò)這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。
教師多媒體出示:
師:如圖,請(qǐng)同學(xué)們寫(xiě)出A、B、C、D這四點(diǎn)的坐標(biāo)。
生甲:A點(diǎn)的坐標(biāo)是(—5,4)。
生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。
生丙:C點(diǎn)的坐標(biāo)是(4,0)。
生。篋點(diǎn)的坐標(biāo)是(0,—6)。
師:很好!我們已經(jīng)知道了怎樣寫(xiě)出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?
教師邊操作邊講解:
在x軸上找出橫坐標(biāo)是3的點(diǎn),過(guò)這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過(guò)這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。
學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。
三、深入探究,層層推進(jìn)
師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開(kāi)始,按逆時(shí)針?lè)较颍堰@四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?
生:都一樣。
師:對(duì),由作垂線求坐標(biāo)的過(guò)程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說(shuō)出其他象限內(nèi)點(diǎn)的坐標(biāo)的`符號(hào)嗎?
生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。
師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?
生:能,在第二象限。
四、練習(xí)新知
師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。
教師寫(xiě)出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點(diǎn)在第三象限。
生乙:B點(diǎn)在第四象限。
生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。
生丁:D點(diǎn)不屬于任何一個(gè)象限,它在x軸上。
師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。
學(xué)生作圖,教師巡視,并予以指導(dǎo)。
五、課堂小結(jié)
師:本節(jié)課你學(xué)到了哪些新的知識(shí)?
生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。
教師補(bǔ)充完善。
教學(xué)反思
物體位置的說(shuō)法和表述物體的位置等問(wèn)題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒(méi)有想到這些問(wèn)題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來(lái)表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)
教學(xué)目標(biāo)
【知識(shí)與技能】
進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。
【過(guò)程與方法】
通過(guò)探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。
【情感、態(tài)度與價(jià)值觀】
培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過(guò)二維坐標(biāo)來(lái)描述圖形頂點(diǎn),從而描述圖形的方法。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。
【難點(diǎn)】
不規(guī)則圖形面積的求法。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境,導(dǎo)入新知
師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來(lái)。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。
學(xué)生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來(lái),看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計(jì)算出它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎樣算的呢?
生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來(lái)看看形成的是什么
圖形?
學(xué)生完成操作后回答:平行四邊形。
師:你能計(jì)算它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎么計(jì)算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來(lái)看這樣一個(gè)連接成的圖形:
教師多媒體出示下圖:
八年級(jí)數(shù)學(xué)上冊(cè)教案7
教學(xué)目標(biāo):
。1)通過(guò)觀察操作,認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn),掌握軸對(duì)稱圖形的概念。
。2)能準(zhǔn)確判斷哪些事物是軸對(duì)稱圖形。
。3)能找出并畫(huà)出軸對(duì)稱圖形的對(duì)稱軸。
。4)通過(guò)實(shí)驗(yàn),培養(yǎng)學(xué)生的抽象思維和空間想象能力。
。5)結(jié)合教材和聯(lián)系生活實(shí)際培養(yǎng)學(xué)生的學(xué)習(xí)興趣和熱愛(ài)生活的情感。
教學(xué)重點(diǎn):
。1)認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn),建立軸對(duì)稱圖形的概念;
(2)準(zhǔn)確判斷生活中哪些事物是軸對(duì)稱圖形。
教學(xué)難點(diǎn):
根據(jù)本班學(xué)生學(xué)習(xí)的實(shí)際情況,本節(jié)課教學(xué)的難點(diǎn)是找軸對(duì)稱圖形的對(duì)稱軸。
教學(xué)過(guò)程:
一、認(rèn)識(shí)對(duì)稱物體
1、出示物體:今天秦老師給大家?guī)?lái)了一些物體,這是我們學(xué)校的同學(xué)參加數(shù)學(xué)競(jìng)賽獲得的獎(jiǎng)杯。這時(shí)一架轟炸戰(zhàn)斗機(jī)。這是海獅頂球。
2、請(qǐng)同學(xué)們仔細(xì)觀察這些物體,想一想它們的外形有什么共同的特點(diǎn)。(可能的回答:對(duì)稱)
。ǖ糠謱W(xué)生這時(shí)并不真正理解何為對(duì)稱)
追問(wèn):對(duì)稱?你是怎樣理解對(duì)稱的呢?
。ǹ赡艿幕卮穑簝蛇吺且粯拥模
像這樣兩邊形狀、大小都完全相同的物體,我們就說(shuō)它是對(duì)稱的。(板書(shū):對(duì)稱)像這樣對(duì)稱的物體,在我們的生活中你看到過(guò)嗎?誰(shuí)來(lái)說(shuō)說(shuō)看?
。ǹ赡苷_的回答:蝴蝶、蜻蜓……)
。ǹ赡苠e(cuò)誤的回答:剪刀)
若有錯(cuò)誤答案則如此處理。追問(wèn):剪刀是不是對(duì)稱的?學(xué)生產(chǎn)生分歧,有說(shuō)是,有說(shuō)不是。剪刀兩邊不是完全一樣的,所以它不對(duì)稱。但是沿著輪廓把它畫(huà)在紙上,是一個(gè)對(duì)稱的。
二、認(rèn)識(shí)對(duì)稱圖形
1、這些對(duì)稱的物體,我們把它畫(huà)在紙上,就得到這樣一些平面圖形。(出示圖片)這些圖形還是對(duì)稱的嗎?(是對(duì)稱的)
同學(xué)們真聰明,一眼就能看出這些圖形都是對(duì)稱的。那么像這樣的圖形,我們就把它們叫做——(生齊說(shuō):對(duì)稱圖形)
(師在“對(duì)稱”后接著板書(shū):圖形)
2、是不是所有的圖形都是對(duì)稱的?它們又是怎樣對(duì)稱的?我們又怎樣證明它們是不是對(duì)稱圖形?這就是我們這節(jié)課要研究的問(wèn)題。為了研究這些問(wèn)題,老師還帶來(lái)了一些平面圖形,你們看——
(師在黑板上貼出圖形)
邊貼邊說(shuō):汽車(chē)圖形、鑰匙圖形、桃子圖形、蝴蝶圖形、青蛙圖形、豎琴圖形、香港區(qū)徽?qǐng)D形。
這些圖形都是對(duì)稱的嗎?(不是)
3、你們能給它們分分類(lèi)嗎?(能)誰(shuí)愿意上來(lái)分一分?
你準(zhǔn)備怎么分類(lèi)?(分成兩類(lèi):一類(lèi)是對(duì)稱圖形,一類(lèi)是不對(duì)稱圖形)
問(wèn)全班同學(xué):你們同意嗎?(同意)
你們?cè)趺粗肋@些圖形就是對(duì)稱圖形?有什么辦法來(lái)證明嗎?(對(duì)折)
好,我們用這個(gè)辦法試一下。誰(shuí)愿意上來(lái)折給大家看的?自己上來(lái),選擇一個(gè)喜歡的圖形折給大家看。
4、圖形對(duì)折后你發(fā)現(xiàn)了什么?誰(shuí)先說(shuō)?(可能的回答:對(duì)折后兩邊一樣或?qū)φ酆髢蛇呏丿B)
你們所說(shuō)的兩邊一樣、兩邊重疊,也就是說(shuō)對(duì)折后兩邊重合了。
。◣煱鍟(shū):重合)(若有說(shuō)出完全重合則板書(shū):完全重合)
請(qǐng)將對(duì)折后的對(duì)稱圖形貼到黑板上,謝謝。
師指不對(duì)稱圖形。同學(xué)們剛才我們通過(guò)把這些對(duì)稱圖形對(duì)折,發(fā)現(xiàn)對(duì)折后兩邊重合了,現(xiàn)在再請(qǐng)幾位同學(xué)上來(lái)折一折不對(duì)稱圖形,看看這次又有什么發(fā)現(xiàn)?還是自己上來(lái)。
折后你發(fā)現(xiàn)了什么?(可能的回答:沒(méi)有重合、對(duì)折后兩邊不一樣)它們有沒(méi)有重合?一點(diǎn)點(diǎn)重合都沒(méi)有嗎?
。ㄓ幸稽c(diǎn)重合)
拿一個(gè)對(duì)稱圖形和同學(xué)折過(guò)的不對(duì)稱圖形比較。這個(gè)圖形對(duì)折后重合了,這個(gè)也重合了,那這兩種重合有什么不一樣嗎?
。ǹ赡艿幕卮穑哼@個(gè)全部重合了,這個(gè)沒(méi)有)
這些對(duì)稱的圖形對(duì)折后全部重合了,也就是完全重合了!
。◣熢凇爸睾稀鼻鞍鍟(shū):完全)而不對(duì)稱圖形只是部分重合。
好,謝謝你們,請(qǐng)將圖形放這(不對(duì)稱圖形下黑板)
大家的表現(xiàn)非常出色,獎(jiǎng)勵(lì)一下我們自己,來(lái)拍拍手吧!
“一——二——停!”我們的兩只手掌現(xiàn)在是——
。ㄉR說(shuō):完全重合)
三、認(rèn)識(shí)對(duì)稱軸,對(duì)稱軸的畫(huà)法
同學(xué)們都很聰明,課前你們都準(zhǔn)備了彩紙、剪刀,如果請(qǐng)你用這些材料創(chuàng)作一個(gè)對(duì)稱圖形,行嗎?
1、請(qǐng)將你創(chuàng)作的對(duì)稱圖形,慢慢打開(kāi),問(wèn):你們發(fā)現(xiàn)了什么?
(中間有一條折痕)
大家把手中的對(duì)稱圖形舉起來(lái),看看是不是每個(gè)對(duì)稱圖形中間——都有一條折痕。這些折痕的左右兩邊——(生齊說(shuō):完全重合)。
這條折痕所在的直線,有它獨(dú)有的名稱叫做“對(duì)稱軸”。
。ㄔ凇皩(duì)稱圖形”前板書(shū):軸)
像這樣的圖形,我們就把它們叫做“軸對(duì)稱圖形”。
(師手指板書(shū),邊說(shuō)邊把“對(duì)折——完全重合——軸對(duì)稱圖形”連起來(lái))
現(xiàn)在大家知道了這個(gè)圖形是——軸對(duì)稱圖形。這個(gè)呢?這個(gè)呢?他們都是——軸對(duì)稱圖形。接下來(lái)請(qǐng)你看著自己創(chuàng)作的圖形說(shuō)說(shuō)。
誰(shuí)來(lái)說(shuō)說(shuō),怎樣的圖形是軸對(duì)稱圖形?
可以上來(lái)拿一個(gè)軸對(duì)稱圖形說(shuō)。請(qǐng)學(xué)生用自己的語(yǔ)言說(shuō)。
2、師拿一張軸對(duì)稱圖形,隨便折兩下。
這是一個(gè)軸對(duì)稱圖形嗎?是的。師隨便折兩下。
誰(shuí)來(lái)說(shuō)說(shuō)這個(gè)軸對(duì)稱圖形的對(duì)稱軸是那條?
。ㄒ粭l都不是。)為什么?
只有對(duì)折后兩邊完全重合的折痕才是對(duì)稱軸。
請(qǐng)你來(lái)折出它的對(duì)稱軸。通常我們用點(diǎn)劃線表示對(duì)稱軸。
師示范。請(qǐng)你在所創(chuàng)作的軸對(duì)稱圖形上用點(diǎn)劃線表示出對(duì)稱軸。
四、平面圖形中的軸對(duì)稱圖形,及它們的對(duì)稱軸各有幾條。
1、對(duì)于軸對(duì)稱圖形,其實(shí)我們并不陌生,在我們認(rèn)識(shí)的一些平面圖形中應(yīng)該就有一些是軸對(duì)稱圖形。我們先回憶一下學(xué)習(xí)過(guò)的平面圖形有哪些?
。ǹ赡艿幕卮穑赫叫巍㈤L(zhǎng)方形、平行四邊形、圓形、梯形、三角形等等)(教師板書(shū),適當(dāng)布局)
同學(xué)們說(shuō)的是否正確呢?用什么辦法來(lái)證明?(對(duì)折)如果它是軸對(duì)稱圖形,那它有幾條對(duì)稱軸呢?
好,那我們就拿出課前準(zhǔn)備的平面圖形,用對(duì)折的方法來(lái)證明,注意如果它有對(duì)稱軸請(qǐng)你折出來(lái)。
結(jié)論出來(lái)了嗎?現(xiàn)在你的判斷和剛才還是一樣的嗎?
3、問(wèn):你想?yún)R報(bào)什么?學(xué)生匯報(bào)。教師機(jī)動(dòng)回答,回答語(yǔ)可有:
這位同學(xué)既能給出判斷結(jié)果,又能說(shuō)出判斷的理由,非常好。
看來(lái),僅靠經(jīng)驗(yàn)、觀察得出的.結(jié)論有時(shí)并不準(zhǔn)確,還需要?jiǎng)邮謱?shí)驗(yàn)進(jìn)行驗(yàn)證。
能抓住軸對(duì)稱圖形的特征進(jìn)行分析,不錯(cuò)!
也許一般的平行四邊形不是軸對(duì)稱圖形,但有些特殊的平行四邊形卻是比如:長(zhǎng)方形和正方形。以此類(lèi)推……
圓有無(wú)數(shù)條對(duì)稱軸。所有的圓都是軸對(duì)稱圖形。
討論平行四邊形、梯形、三角形時(shí),我們既要考慮一般的圖形,又要考慮特殊的圖形。但是關(guān)于圓形,我們卻無(wú)需考慮這么多,正如你所說(shuō)的,所有的圓都是軸對(duì)稱圖形,不存在什么特殊的情況?磥(lái),數(shù)學(xué)學(xué)習(xí)中,具體的問(wèn)題還得具體對(duì)待。
。ㄒ话闳切、一般梯形、直角梯形、一般平行四邊形不是軸對(duì)稱圖形,等腰三角形、等腰梯形、正三角形、長(zhǎng)方形、正方形和圓都是軸對(duì)稱圖形)等腰梯形(1條),正五邊形(5條),圓(無(wú)數(shù)條)
4、用測(cè)量的方法找對(duì)稱軸。
剛才,大家都用對(duì)折的方法找出了他們的對(duì)稱軸,但是如果老師請(qǐng)你在黑板面上找出對(duì)稱軸呢?
大家都有一張長(zhǎng)方形紙,假設(shè)它就是不能對(duì)折的黑板面,怎么畫(huà)出它的對(duì)稱軸?(我們可以用測(cè)量的方法,來(lái)找出對(duì)邊的中點(diǎn),連結(jié)中點(diǎn)。用同樣的方法,我們可以畫(huà)出另一條對(duì)稱軸。
現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)本,畫(huà)出書(shū)上長(zhǎng)方形的對(duì)稱軸。(小組內(nèi)交流檢查)
五、練習(xí)
1、學(xué)習(xí)了什么是軸對(duì)稱圖形,現(xiàn)在請(qǐng)?jiān)谀闵磉叺奈矬w上找出三個(gè)軸對(duì)稱圖形。(瓷磚面、電視機(jī)柜、衣服、國(guó)旗?、凳面、桌面)
問(wèn):國(guó)旗是軸對(duì)稱圖形嗎?
產(chǎn)生沖突。說(shuō)明:不但要觀察外形,還要觀察里面的圖案。
2、判斷國(guó)旗是否是軸對(duì)稱圖形。
3、找阿拉伯?dāng)?shù)字中的軸對(duì)稱圖形
4、領(lǐng)略窗花的美麗,再?gòu)闹姓业絼?chuàng)作的靈感,創(chuàng)作軸對(duì)稱圖形。教師可出示一些指導(dǎo)性圖片。
選擇一些貼到黑板上,最后出示“美”字。
總結(jié):軸對(duì)稱圖形非常美麗,因此被廣泛的運(yùn)用于服裝、家具、交通、商標(biāo)等方面的設(shè)計(jì)中,希望大家能夠運(yùn)用今天的知識(shí),把我們的教室、把你的家以后把我們的祖國(guó)裝扮得更漂亮。
八年級(jí)數(shù)學(xué)上冊(cè)教案8
教學(xué)目標(biāo):
理解同底數(shù)冪的乘法法則,運(yùn)用同底數(shù)冪的乘法法則解決一些實(shí)際問(wèn)題.通過(guò)“同底數(shù)冪的乘法法則”的推導(dǎo)和應(yīng)用,使學(xué)生初步理解特殊到般再到特殊的認(rèn)知規(guī)律.
教學(xué)重點(diǎn)與難點(diǎn):
正確理解同底數(shù)冪的乘法法則以及適用范圍.
教學(xué)過(guò)程:
一、回顧冪的相關(guān)知識(shí)
an的意義:an表示n個(gè)a相乘,我們把這種運(yùn)算叫做乘方.乘方的結(jié)果叫冪;a叫做底數(shù),n是指數(shù).
二、創(chuàng)設(shè)情境,感覺(jué)新知
問(wèn)題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?
學(xué)生分析,總結(jié)結(jié)果
1012×103=()×(10×10×10)==1015.
通過(guò)觀察可以發(fā)現(xiàn)1012、103這兩個(gè)因數(shù)是同底數(shù)冪的形式,所以我們把像1012×103的運(yùn)算叫做同底數(shù)冪的乘法.根據(jù)實(shí)際需要,我們有必要研究和學(xué)習(xí)這樣的運(yùn)算──同底數(shù)冪的乘法.
學(xué)生動(dòng)手:
計(jì)算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整數(shù))
教師引導(dǎo)學(xué)生注意觀察計(jì)算前后底數(shù)和指數(shù)的關(guān)系,并能用自己的語(yǔ)言描述.
得到結(jié)論:
。1)特點(diǎn):這三個(gè)式子都是底數(shù)相同的冪相乘.相乘結(jié)果的`底數(shù)與原來(lái)底數(shù)相同,指數(shù)是原來(lái)兩個(gè)冪的指數(shù)的和.
。2)一般性結(jié)論:am·an表示同底數(shù)冪的乘法.根據(jù)冪的意義可得:
am·an=()·()=()=am+n
am·an=am+n(m、n都是正整數(shù)),即為:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加
三、小結(jié):
同底數(shù)冪的乘法的運(yùn)算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
注意兩點(diǎn):
一是必須是同底數(shù)冪的乘法才能運(yùn)用這個(gè)性質(zhì);
二是運(yùn)用這個(gè)性質(zhì)計(jì)算時(shí)一定是底數(shù)不變,指數(shù)相加,即am·an=am+n
八年級(jí)數(shù)學(xué)上冊(cè)教案9
一、教學(xué)目標(biāo)
1、認(rèn)識(shí)中位數(shù)和眾數(shù),并會(huì)求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們?cè)趯?shí)際問(wèn)題中分析并做出決策。
3、會(huì)利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):認(rèn)識(shí)中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點(diǎn):利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點(diǎn)的突破方法:
首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動(dòng)對(duì)中位數(shù)沒(méi)有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì)。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少不受極端值的影響。
教學(xué)過(guò)程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個(gè)數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個(gè)數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個(gè)數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的'那個(gè)數(shù)據(jù),若幾個(gè)數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個(gè)數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實(shí)際問(wèn)題時(shí),應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實(shí)例,使同學(xué)在分析不同實(shí)例中有所體會(huì)。
三、例習(xí)題的意圖分析
1、教材P143的例4的意圖
(1)、這個(gè)問(wèn)題的研究對(duì)象是一個(gè)樣本,主要是反映了統(tǒng)計(jì)學(xué)中常用到一種解決問(wèn)題的方法:對(duì)于數(shù)據(jù)較多的研究對(duì)象,我們可以考察總體中的一個(gè)樣本,然后由樣本的研究結(jié)論去估計(jì)總體的情況。
(2)、這個(gè)例題另一個(gè)意圖是交待了當(dāng)數(shù)據(jù)個(gè)數(shù)為偶數(shù)時(shí),中位數(shù)的求法和解題步驟。(因?yàn)樵谇懊嬗薪榻B中位數(shù)求法,這里不再重述)
(3)、問(wèn)題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計(jì)一個(gè)數(shù)據(jù)占總體的相對(duì)位置,說(shuō)明中位數(shù)是統(tǒng)計(jì)學(xué)中的一個(gè)重要的數(shù)據(jù)代表。
(4)、這個(gè)例題再一次體現(xiàn)了統(tǒng)計(jì)學(xué)知識(shí)與實(shí)際生活是緊密聯(lián)系的,所以應(yīng)鼓勵(lì)學(xué)生學(xué)好這部分知識(shí)。
2、教材P145例5的意圖
(1)、通過(guò)例5應(yīng)使學(xué)生明白通常對(duì)待銷(xiāo)售問(wèn)題我們要研究的是眾數(shù),它代表該型號(hào)的產(chǎn)品銷(xiāo)售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴(yán)格的講教材本節(jié)課沒(méi)有引入的問(wèn)題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過(guò)程中拉開(kāi)序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過(guò)了平均數(shù)的這個(gè)數(shù)據(jù)代表。它在分析數(shù)據(jù)過(guò)程中擔(dān)當(dāng)了重要的角色,今天我們來(lái)共同研究和認(rèn)識(shí)數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們?cè)诜治鰯?shù)據(jù)過(guò)程中又起到怎樣的作用。
五、例習(xí)題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒(méi)有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過(guò)觀察會(huì)發(fā)現(xiàn)共有12個(gè)數(shù)據(jù),偶數(shù)個(gè)可以取中間的兩個(gè)數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中第二行可以查到23.5號(hào)鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤(rùn)提出。
六、隨堂練習(xí)
1某公司銷(xiāo)售部有營(yíng)銷(xiāo)人員15人,銷(xiāo)售部為了制定某種商品的銷(xiāo)售金額,統(tǒng)計(jì)了這15個(gè)人的銷(xiāo)售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個(gè)銷(xiāo)售員該月銷(xiāo)量的中位數(shù)和眾數(shù)。
假設(shè)銷(xiāo)售部負(fù)責(zé)人把每位營(yíng)銷(xiāo)員的月銷(xiāo)售定額定為320件,你認(rèn)為合理嗎?如果不合理,請(qǐng)你制定一個(gè)合理的銷(xiāo)售定額并說(shuō)明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷(xiāo)售臺(tái)數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺(tái)20臺(tái)8臺(tái)4臺(tái)
4月16臺(tái)30臺(tái)14臺(tái)8臺(tái)
根據(jù)表格回答問(wèn)題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進(jìn)貨,6月份在有限的資金下進(jìn)貨單位將如何決定?
答案:1. (1)210件、210件(2)不合理。因?yàn)?5人中有13人的銷(xiāo)售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營(yíng)銷(xiāo)人員的一般水平),銷(xiāo)售額定為210件合適,因?yàn)樗仁侵形粩?shù)又是眾數(shù),是大部分人能達(dá)到的額定。
2. (1)1.2匹(2)通過(guò)觀察可知1.2匹的銷(xiāo)售,所以要多進(jìn)1.2匹,由于資金有限就要少進(jìn)2匹空調(diào)。
七、課后練習(xí)
1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是
2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒(méi)有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.隨機(jī)抽取我市一年(按365天計(jì))中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數(shù)3 5 5 7 6 2 2
請(qǐng)你根據(jù)上述數(shù)據(jù)回答問(wèn)題:
(1).該組數(shù)據(jù)的中位數(shù)是什么?
(2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達(dá)到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天
八年級(jí)數(shù)學(xué)上冊(cè)教案10
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說(shuō)理和簡(jiǎn)單的推理的意識(shí)及能力。
重點(diǎn)難點(diǎn):
重點(diǎn):了解勾股定理的由來(lái),并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。
難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)過(guò)程
一、創(chuàng)設(shè)問(wèn)題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國(guó)古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國(guó)是最早了解勾股定理的國(guó)家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示投影2(書(shū)中的P2圖1—2)并回答:
1、觀察圖
1—2,正方形A中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
正方形B中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
正方形C中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問(wèn):
3、圖
1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識(shí),教師板書(shū),A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?
二、做一做
出示投影3(書(shū)中P3圖1—4)提問(wèn):
1、圖
1—3中,A,B,C之間有什么關(guān)系?
2、圖
1—4中,A,B,C之間有什么關(guān)系?
3、從圖
1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識(shí)后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖
1—1、1—2、1—3、1—4中,你能用三角形的邊長(zhǎng)表示正方形的.面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書(shū):
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說(shuō):如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國(guó)古代稱直角三角形的較短的直角邊為勾,較長(zhǎng)的為股,斜邊為弦,這就是勾股定理的由來(lái)。
3、分別以
5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度(學(xué)生測(cè)量后回答斜邊長(zhǎng)為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長(zhǎng)嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯(cuò)例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題
△ ABC并未說(shuō)明它是否是直角三角形,所以用勾股定理就沒(méi)有依據(jù)。
。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個(gè)題目條件不足,第三邊無(wú)法求得。
2、練習(xí)P
7 §1.1 1
六、作業(yè)
課本P7 §1.1 2、3、4
八年級(jí)數(shù)學(xué)上冊(cè)教案11
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形高線、中線及角平分線的概念、幾何語(yǔ)言表達(dá)及它們的畫(huà)法.
2.內(nèi)容解析
本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫(huà)法,培養(yǎng)學(xué)生動(dòng)手操作及解決問(wèn)題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛(ài)生活、勇于探索的思想感情。
理解三角形高、角平分線及中線概念到用幾何語(yǔ)言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問(wèn)題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備.
本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的畫(huà)法,難點(diǎn)是鈍角三角形的高的畫(huà)法及不同類(lèi)型的三角形高線的位置關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)理解三角形的高、中線與角平分線等概念;
(2)會(huì)用工具畫(huà)三角形的高、中線與角平分線;
2.教學(xué)目標(biāo)解析
(1)經(jīng)歷畫(huà)圖實(shí)踐過(guò)程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語(yǔ)言表達(dá)三角形的高、中線與角平分線的性質(zhì).
(3)掌握三角形的高、中線與角平分線的畫(huà)法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn).
三、教學(xué)問(wèn)題診斷分析
三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對(duì)邊或?qū)吽诘闹本上.
三角形的中線的`理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn).
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上.而角的平分線是一條射線,即就是說(shuō)三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.
八年級(jí)數(shù)學(xué)上冊(cè)教案12
一、內(nèi)容和內(nèi)容解析
1、內(nèi)容
正比例函數(shù)的概念。
2、內(nèi)容解析
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過(guò)對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類(lèi)比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問(wèn)題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的`,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
本節(jié)課主要是通過(guò)對(duì)生活中大量實(shí)際問(wèn)題的分析,寫(xiě)出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫(xiě)出正比例函數(shù)的解析式。
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
二、目標(biāo)和目標(biāo)解析
1、目標(biāo)
。1)經(jīng)歷正比例函數(shù)概念的形成過(guò)程,理解正比例函數(shù)的概念;
。2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。
2、目標(biāo)解析
達(dá)成目標(biāo)(1)的標(biāo)志是:通過(guò)對(duì)實(shí)際問(wèn)題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問(wèn)題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問(wèn)題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。
三、教學(xué)問(wèn)題診斷分析
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問(wèn)題進(jìn)行分析過(guò)程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過(guò)大量實(shí)例分析,寫(xiě)出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程學(xué)生有一定難度。
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程。
八年級(jí)數(shù)學(xué)上冊(cè)教案13
【教學(xué)目標(biāo)】
知識(shí)與技能
會(huì)推導(dǎo)平方差公式,并且懂得運(yùn)用平方差公式進(jìn)行簡(jiǎn)單計(jì)算。
過(guò)程與方法
經(jīng)歷探索特殊形式的多項(xiàng)式乘法的過(guò)程,發(fā)展學(xué)生的符號(hào)感和推理能力,使學(xué)生逐漸掌握平方差公式。
情感、態(tài)度與價(jià)值觀
通過(guò)合作學(xué)習(xí),體會(huì)在解決具體問(wèn)題過(guò)程中與他人合作的重要性,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性。
【教學(xué)重難點(diǎn)】
重點(diǎn):平方差公式的推導(dǎo)和運(yùn)用,以及對(duì)平方差公式的幾何背景的了解。
難點(diǎn):平方差公式的應(yīng)用。
關(guān)鍵:對(duì)于平方差公式的推導(dǎo),我們可以通過(guò)教師引導(dǎo),學(xué)生觀察、總結(jié)、猜想,然后得出結(jié)論來(lái)突破;抓住平方差公式的本質(zhì)特征,是正確應(yīng)用公式來(lái)計(jì)算的關(guān)鍵。
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情境,故事引入
【情境設(shè)置】教師請(qǐng)一位學(xué)生講一講《狗熊掰棒子》的故事
【學(xué)生活動(dòng)】1位學(xué)生有聲有色地講述著《狗熊掰棒子》的故事,其他學(xué)生認(rèn)真聽(tīng)著,不時(shí)補(bǔ)充。
【教師歸納】聽(tīng)了這則故事之后,同學(xué)們應(yīng)該懂得這么一個(gè)道理,學(xué)習(xí)千萬(wàn)不能像狗熊掰棒子一樣,前面學(xué),后面忘,那么,上節(jié)課我們學(xué)習(xí)了什么呢?還記得嗎?
【學(xué)生回答】多項(xiàng)式乘以多項(xiàng)式。
【教師激發(fā)】大家是不是已經(jīng)掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯(cuò)誤呢?下面我們就來(lái)做這幾道題,看看你是否掌握了以前的知識(shí)。
【問(wèn)題牽引】計(jì)算:
。1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,觀察以上算式及運(yùn)算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個(gè)例子驗(yàn)證你的發(fā)現(xiàn)。
【學(xué)生活動(dòng)】分四人小組,合作學(xué)習(xí),獲得以下結(jié)果:
。1)(x+2)(x—2)=x2—4;
。2)(1+3a)(1—3a)=1—9a2;
。3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教師活動(dòng)】請(qǐng)一位學(xué)生上臺(tái)演示,然后引導(dǎo)學(xué)生仔細(xì)觀察以上算式及其運(yùn)算結(jié)果,尋找規(guī)律。
【學(xué)生活動(dòng)】討論
【教師引導(dǎo)】剛才同學(xué)們從上述算式中找到了這一組整式乘法的結(jié)果的規(guī)律,這些是一類(lèi)特殊的多項(xiàng)式相乘,那么如何用字母來(lái)表示剛才同學(xué)們所歸納出來(lái)的特殊多項(xiàng)式相乘的規(guī)律呢?
【學(xué)生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用語(yǔ)言描述就是:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。
【教師活動(dòng)】表?yè)P(yáng)學(xué)生的探索精神,引出課題──平方差,并說(shuō)明這是一個(gè)平方差公式和公式中的字母含義。
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【教師講述】
平方差公式的運(yùn)用,關(guān)鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了,F(xiàn)在大家來(lái)看看下面幾個(gè)例子,從中得到啟發(fā)。
例1:運(yùn)用平方差公式計(jì)算:
。1)(2x+3)(2x—3);
。2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步練習(xí)
二、填空題
5、冪的乘方,底數(shù)______,指數(shù)______,用字母表示這個(gè)性質(zhì)是______。
6、若32×83=2n,則n=______。
《乘法公式》同步測(cè)試題
25、利用正方形的.面積公式和梯形的面積公式即可求解;
根據(jù)所得的兩個(gè)式子相等即可得到。
此題考查了平方差公式的幾何背景,根據(jù)正方形的面積公式和梯形的面積公式得出它們之間的關(guān)系是解題的關(guān)鍵,是一道基礎(chǔ)題。
26、由等式左邊兩數(shù)的底數(shù)可知,兩底數(shù)是相鄰的兩個(gè)自然數(shù),右邊為兩底數(shù)的和,由此得出規(guī)律;
等式左邊減數(shù)的底數(shù)與序號(hào)相同,由此得出第n個(gè)式子;
八年級(jí)數(shù)學(xué)上冊(cè)教案14
一、教學(xué)目標(biāo)
知識(shí)與技能
1、了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.
2、了解開(kāi)立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根.
過(guò)程與方法
1讓學(xué)生體會(huì)一個(gè)數(shù)的立方根的惟一性.
2培養(yǎng)學(xué)生用類(lèi)比的思想求立方根的能力,體會(huì)立方與開(kāi)立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。
情感態(tài)度與價(jià)值觀
通過(guò)立方根符號(hào)的引入體會(huì)數(shù)學(xué)的簡(jiǎn)潔美。
二、重點(diǎn)難點(diǎn)
重點(diǎn)
立方根的概念和求法。
難點(diǎn)
立方根與平方根的區(qū)別,立方根的求法
三、學(xué)情分析
前面已經(jīng)學(xué)過(guò)了平方根的知識(shí),由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計(jì)上,主要還是采取類(lèi)比的思想,在全面回顧平方根的基礎(chǔ)上,再來(lái)引導(dǎo)學(xué)生進(jìn)行立方根知識(shí)的學(xué)習(xí),讓學(xué)生感覺(jué)到其實(shí)立方根知識(shí)并不難,可以與平方根知識(shí)對(duì)比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識(shí)的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此,在反思中看待與理解新知識(shí)和新問(wèn)題,會(huì)更理性和全面,會(huì)有更大的進(jìn)步。
四、教學(xué)過(guò)程設(shè)計(jì)
教學(xué)環(huán)節(jié)問(wèn)題設(shè)計(jì)師生活動(dòng)備注
情境創(chuàng)設(shè)問(wèn)題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長(zhǎng)應(yīng)該是多少?
設(shè)這種包裝箱的邊長(zhǎng)為xm,則=27這就是求一個(gè)數(shù),使它的立方等于27.
因?yàn)?27,所以x=3.即這種包裝箱的邊長(zhǎng)應(yīng)為3m
歸納:
立方根的概念:
創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。
通過(guò)具體問(wèn)題得出立方根的概念
探究一:
根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?
因?yàn)椋ǎ,所?.125的'立方根是()
因?yàn)椋ǎ,所?8的立方根是()
因?yàn)椋ǎ,所?0.125的立方根是()
因?yàn)椋ǎ,所?的立方根是()
一個(gè)正數(shù)有一個(gè)正的立方根
0有一個(gè)立方根,是它本身
一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根
任何數(shù)都有唯一的立方根
【總結(jié)歸納】
一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開(kāi)方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.
探究二:
因?yàn)樗?
因?yàn)椋?總結(jié):
利用開(kāi)立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù),即。
八年級(jí)數(shù)學(xué)上冊(cè)教案15
教學(xué)目標(biāo):
知識(shí)與技能目標(biāo):
1.掌握矩形的概念、性質(zhì)和判別條件。
2.提高對(duì)矩形的性質(zhì)和判別在實(shí)際生活中的應(yīng)用能力。
過(guò)程與方法目標(biāo):
1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過(guò)程,在直觀操作活動(dòng)和簡(jiǎn)單的說(shuō)理過(guò)程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說(shuō)理的基本方法。
2.知道解決矩形問(wèn)題的基本思想是化為三角形問(wèn)題來(lái)解決,滲透轉(zhuǎn)化歸思想。
情感與態(tài)度目標(biāo):
1.在操作活動(dòng)過(guò)程中,加深對(duì)矩形的的認(rèn)識(shí),并以此激發(fā)學(xué)生的探索精神。
2.通過(guò)對(duì)矩形的探索學(xué)習(xí),體會(huì)它的內(nèi)在美和應(yīng)用美。
教學(xué)重點(diǎn):
矩形的性質(zhì)和常用判別方法的理解和掌握。
教學(xué)難點(diǎn):
矩形的性質(zhì)和常用判別方法的綜合應(yīng)用。
教學(xué)方法:
分析啟發(fā)法
教具準(zhǔn)備:
像框,平行四邊形框架教具,多媒體課件。
教學(xué)過(guò)程設(shè)計(jì):
一、情境導(dǎo)入:
演示平行四邊形活動(dòng)框架,引入課題。
二、講授新課:
1.歸納矩形的定義:
問(wèn)題:從上面的演示過(guò)程可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?(學(xué)生思考、回答。)
結(jié)論:有一個(gè)內(nèi)角是直角的平行四邊形是矩形。
2.探究矩形的'性質(zhì):
(1)問(wèn)題:像框除了“有一個(gè)內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.)
結(jié)論:矩形的四個(gè)角都是直角。
(2)探索矩形對(duì)角線的性質(zhì):
讓學(xué)生進(jìn)行如下操作后,思考以下問(wèn)題:(幻燈片展示)
在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上,拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.
、匐S著∠α的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的?
、诋(dāng)∠α是銳角時(shí),兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?當(dāng)∠α是鈍角時(shí)呢?
、郛(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?
(學(xué)生操作,思考、交流、歸納。)
結(jié)論:矩形的兩條對(duì)角線相等.
(3)議一議:(展示問(wèn)題,引導(dǎo)學(xué)生討論解決)
、倬匦问禽S對(duì)稱圖形嗎?如果是,它有幾條對(duì)稱軸?如果不是,簡(jiǎn)述你的理由.
、谥苯侨切涡边吷系闹芯等于斜邊長(zhǎng)的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?
(4)歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會(huì)矩形的“對(duì)稱美”)
矩形的對(duì)邊平行且相等;矩形的四個(gè)角都是直角;矩形的對(duì)角線相等且互相平分;矩形是軸對(duì)稱圖形.
例解:(性質(zhì)的運(yùn)用,滲透矩形對(duì)角線的“化歸”功能)
如圖,在矩形ABCD中,兩條對(duì)角線AC,BD相交于點(diǎn)O,AB=OA=4
厘米,求BD與AD的長(zhǎng)。
(引導(dǎo)學(xué)生分析、解答)
探索矩形的判別條件:(由修理桌子引出)
(5)想一想:
對(duì)角線相等的平行四邊形是怎樣的四邊形?為什么?
結(jié)論:對(duì)角線相等的平行四邊形是矩形.
(理由可由師生共同分析,然后用幻燈片展示完整過(guò)程.)
(6)歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納)
有一個(gè)內(nèi)角是直角的平行四邊形是矩形.
對(duì)角線相等的平行四邊形是矩形.
三、課堂練習(xí):
四、新課小結(jié):
通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲?
(師生共同從知識(shí)與思想方法兩方面小結(jié)。)
五、作業(yè)設(shè)計(jì):P99習(xí)題4.6第1、2、3題。
板書(shū)設(shè)計(jì):
1.矩形
矩形的定義:
矩形的性質(zhì):
前面知識(shí)的小系統(tǒng)圖示:
2.矩形的判別條件:
例1
課后反思:
在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會(huì)自主探索的方法,自己動(dòng)手猜想驗(yàn)證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計(jì)算也學(xué)會(huì)應(yīng)用轉(zhuǎn)化為直角三角形的方法來(lái)解決?偟目磥(lái)這節(jié)課學(xué)生掌握的還不錯(cuò)。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
【八年級(jí)數(shù)學(xué)上冊(cè)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
八年級(jí)上冊(cè)數(shù)學(xué)教案12-11
數(shù)學(xué)上冊(cè)教案01-15
人教版八年級(jí)數(shù)學(xué)上冊(cè)教案01-26
人教版八年級(jí)上冊(cè)數(shù)學(xué)教案02-22
[推薦]八年級(jí)上冊(cè)數(shù)學(xué)教案05-23
(集合)八年級(jí)上冊(cè)數(shù)學(xué)教案05-24