高二數(shù)學(xué)教案集錦15篇
作為一位杰出的老師,編寫教案是必不可少的,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。怎樣寫教案才更能起到其作用呢?以下是小編為大家收集的高二數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
高二數(shù)學(xué)教案1
一、教材分析
【教材地位及作用】
基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對象為高二學(xué)生,本節(jié)課為第一課時,重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題奠定基礎(chǔ)。因此基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,它也是對學(xué)生進(jìn)行情感價值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
【教學(xué)目標(biāo)】
依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實際情況,特確定如下目標(biāo):
知識與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會構(gòu)造條件使用基本不等式;
過程與方法目標(biāo):通過探究基本不等式,使學(xué)生體會知識的形成過程,培養(yǎng)分析、解決問題的能力;
情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
【教學(xué)重難點(diǎn)】
重點(diǎn):理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。
難點(diǎn):利用基本不等式推導(dǎo)不等式.
關(guān)鍵是對基本不等式的理解掌握.
二、教法分析
本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實際問題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率.
三、學(xué)法指導(dǎo)
新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動權(quán)還給學(xué)生,倡導(dǎo)積極主動,勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識,使學(xué)生成為學(xué)習(xí)的主人。
四、教學(xué)過程
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。
具體過程安排如下:
(一)基本不等式的教學(xué)設(shè)計創(chuàng)設(shè)情景,提出問題
設(shè)計意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實”,現(xiàn)實情境問題是數(shù)學(xué)教學(xué)的平臺,數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實,并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實.基于此,設(shè)置如下情境:
上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問題1]請觀察會標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們在面積上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)
(二)探究問題,抽象歸納
基本不等式的教學(xué)設(shè)計1.探究圖形中的不等關(guān)系
形的角度----(利用多媒體展示會標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個直角三角形的`面積之和小于或等于正方形的面積.)
數(shù)的角度
[問題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?
學(xué)生討論結(jié)果:。
[問題3]大家看,這個圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號什么時候成立呢?(師生共同探索)
咱們再看一看圖形的變化,(教師演示)
(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時等號成立。
設(shè)計意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
2.抽象歸納:
一般地,對于任意實數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時,等號成立。
[問題4]你能給出它的證明嗎?
學(xué)生在黑板上板書。
[問題5]特別地,當(dāng)時,在不等式中,以、分別代替a、b,得到什么?
學(xué)生歸納得出。
設(shè)計意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
【歸納總結(jié)】
如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時,等號成立。
我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。
3.探究基本不等式證明方法:
[問題6]如何證明基本不等式?
設(shè)計意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識基本不等式到理性證明,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個不等式。
方法一:作差比較或由基本不等式的教學(xué)設(shè)計展開證明。
方法二:分析法
要證
只要證2
要證,只要證2
要證,只要證
顯然,是成立的。當(dāng)且僅當(dāng)a=b時,中的等號成立。
4.理解升華
1)文字語言敘述:
兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2)符號語言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時,。
[問題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時,等號成立”的含義是:
當(dāng)a=b時,取等號,即;
僅當(dāng)a=b時,取等號,即。
3)探究基本不等式的幾何意義:
基本不等式的教學(xué)設(shè)計借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),
CD⊥AB,AC=a,CB=b,
[問題8]你能利用這個圖形得出基本不等式的幾何解釋嗎?
(教師演示,學(xué)生直觀感覺)
易證RtACDRtDCB,那么CD2=CA·CB
即CD=.
這個圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時,等號成立.
因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.
4)聯(lián)想數(shù)列的知識理解基本不等式
從形的角度來看,基本不等式具有特定的幾何意義;從數(shù)的角度來看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.
[問題9]回憶一下你所學(xué)的知識中,有哪些地方出現(xiàn)過“和”與“積”的結(jié)構(gòu)?
歸納得出:
均值不等式的代數(shù)解釋為:兩個正數(shù)的等差中項不小它們的等比中項.
基本不等式的教學(xué)設(shè)計(四)體會新知,遷移應(yīng)用
例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計
(2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,
,過作交于,你能利用這個圖形得出這個不等式的一種幾何解釋嗎?
設(shè)計意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識,進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時,等號成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。
(五)演練反饋,鞏固深化
公式應(yīng)用之一:
1.試判斷與與2的大小關(guān)系?
問題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?
2.試判斷與7的大小關(guān)系?
公式應(yīng)用之二:
設(shè)計意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對生活的關(guān)注,讓學(xué)生體會:數(shù)學(xué)就在我們身邊的生活中
(1)用一個兩臂長短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺得這種做法比實際重量輕了還是重了?
(2)甲、乙兩商場對單價相同的同類產(chǎn)品進(jìn)行促銷.甲商場采取的促銷方式是在原價p折的基礎(chǔ)上再打q折;乙商場的促銷方式則是兩次都打折.對顧客而言,哪種打折方式更合算?(0≠q)
(五)反思總結(jié),整合新知:
通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗教訓(xùn)?還有哪些問題需要請教?
設(shè)計意圖:通過反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗教訓(xùn),鞏固知識技能,提高認(rèn)知水平.從各種角度對均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點(diǎn),突破難點(diǎn)
老師根據(jù)情況完善如下:
知識要點(diǎn):
(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征
(2)基本不等式在幾何、代數(shù)及實際應(yīng)用三方面的意義
思想方法技巧:
(1)數(shù)形結(jié)合思想、“整體與局部”
(2)歸納與類比思想
(3)換元法、比較法、分析法
(七)布置作業(yè),更上一層
1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計
2.書面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計
3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會有怎樣的不等式?
設(shè)計意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
五、評價分析
1.在建立新知的過程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識來分析問題、解決問題,以形成比較系統(tǒng)和完整的知識結(jié)構(gòu)。每個問題在設(shè)計時,充分考慮了學(xué)生的具體情況,力爭提問準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價值,對知識的理解和掌握在不斷的思考和討論中完善和加深。
2.本節(jié)的教學(xué)中要求學(xué)生對基本不等式在數(shù)與形兩個方面都有比較充分的認(rèn)識,特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對基本不等式得以深刻理解!皵(shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會用的,只有學(xué)生通過實踐,意識到它的好處之后,學(xué)生才會在解決問題時去嘗試使用,只有通過不斷的使用才能促進(jìn)學(xué)生對這種思想方法的再理解,從而達(dá)到掌握它的目的。
高二數(shù)學(xué)教案2
課題:命題
課時:001
課型:新授課
教學(xué)目標(biāo)
。、知識與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;
。、過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;
。场⑶楦、態(tài)度與價值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):命題的概念、命題的構(gòu)成
難點(diǎn):分清命題的條件、結(jié)論和判斷命題的真假
教學(xué)過程
一、復(fù)習(xí)回顧
引入:初中已學(xué)過命題的知識,請同學(xué)們回顧:什么叫做命題?
二、新課教學(xué)
下列語句的表述形式有什么特點(diǎn)?你能判斷他們的真假嗎?
。1)若直線a∥b,則直線a與直線b沒有公共點(diǎn).
。2)2+4=7.
。3)垂直于同一條直線的兩個平面平行.
。4)若x2=1,則x=1.
。5)兩個全等三角形的面積相等.
。6)3能被2整除.
討論、判斷:學(xué)生通過討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。
教師的引導(dǎo)分析:所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。
抽象、歸納:
1、命題定義:一般地,我們把用語言、符號或式子表達(dá)的,可以判斷真假的陳述句叫做命題.
命題的定義的要點(diǎn):能判斷真假的陳述句.
在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請學(xué)生舉幾個數(shù)學(xué)命題的例子.教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來加深對命題這一概念的.理解.
例1:判斷下列語句是否為命題?
(1)空集是任何集合的子集.
(2)若整數(shù)a是素數(shù),則是a奇數(shù).
(3)指數(shù)函數(shù)是增函數(shù)嗎?
(4)若平面上兩條直線不相交,則這兩條直線平行.
(5)=-2.
。6)x>15.
讓學(xué)生思考、辨析、討論解決,且通過練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個語句是不是命題,關(guān)鍵看兩點(diǎn):第一是“陳述句”,第二是“可以判斷真假”,這兩個條件缺一不可.疑問句、祈使句、感嘆句均不是命題.
解略。
引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來看看?
通過對此問的思考,學(xué)生將清晰地認(rèn)識到定理、推論都是命題.
過渡:同學(xué)們都知道,一個定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?
2、命題的構(gòu)成――條件和結(jié)論
定義:從構(gòu)成來看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成.在數(shù)學(xué)中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論.
例2:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假.
(1)若整數(shù)a能被2整除,則a是偶數(shù).
。ǎ玻┤羲倪呅惺橇庑危瑒t它的對角線互相垂直平分.
。ǎ常┤鬭>0,b>0,則a+b>0.
(4)若a>0,b>0,則a+b<0.
。ǎ担┐怪庇谕粭l直線的兩個平面平行.
此題中的(1)(2)(3)(4),較容易,估計學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題(3)與(4)的目的在于:通過這兩個例子的比較,學(xué)更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結(jié)果是對的還是錯的。
此例中的命題(5),不是“若P,則q”的形式,估計學(xué)生會有困難,此時,教師引導(dǎo)學(xué)生一起分析:已知的事項為“條件”,由已知推出的事項為“結(jié)論”.
解略。
過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題.
3、命題的分類
真命題:如果由命題的條件P通過推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題.
假命題:如果由命題的條件P通過推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題.
強(qiáng)調(diào):
(1)注意命題與假命題的區(qū)別.如:“作直線AB”.這本身不是命題.也更不是假命題.
。ǎ玻┟}是一個判斷,判斷的結(jié)果就有對錯之分.因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。
判斷一個數(shù)學(xué)命題的真假方法:
。ǎ保⿺(shù)學(xué)中判定一個命題是真命題,要經(jīng)過證明.
。ǎ玻┮袛嘁粋命題是假命題,只需舉一個反例即可.
例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:
。1)面積相等的兩個三角形全等。
。2)負(fù)數(shù)的立方是負(fù)數(shù)。
。3)對頂角相等。
分析:要把一個命題寫成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若P,則q”的形式.解略。
三、鞏固練習(xí):
P4第2,3。
四、作業(yè):
P8:習(xí)題1.1A組~第1題
五、教學(xué)反思
師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容.
1、什么叫命題?真命題?假命題?
2、命題是由哪兩部分構(gòu)成的?
3、怎樣將命題寫成“若P,則q”的形式.
4、如何判斷真假命題.
高二數(shù)學(xué)教案3
目的要求:
1.復(fù)習(xí)鞏固求曲線的方程的基本步驟;
2.通過教學(xué),逐步提高學(xué)生求貢線的方程的能力,靈活掌握解法步驟;
3.滲透“等價轉(zhuǎn)化”、“數(shù)形結(jié)合”、“整體”思想,培養(yǎng)學(xué)生全面分析問題的能力,訓(xùn)練思維的深刻性、廣闊性及嚴(yán)密性。
教學(xué)重點(diǎn)、難點(diǎn):
方程的求法教學(xué)方法:講練結(jié)合、討論法
教學(xué)過程:
一、學(xué)點(diǎn)聚集:
1.曲線C的方程是f(x,y)=0(或方程f(x,y)=0的曲線是C)實質(zhì)是
、偾C上任一點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解
、谝苑匠蘤(x,y)=0的解為坐標(biāo)的點(diǎn)都是曲線C上的點(diǎn)
2.求曲線方程的'基本步驟
、俳ㄏ翟O(shè)點(diǎn);
、趯さ攘惺剑
、鄞鷵Q(坐標(biāo)化);
、芑啠
、葑C明(若第四步為恒等變形,則這一步驟可省略)
二、基礎(chǔ)訓(xùn)練題:
221.方程x-y=0的曲線是()
A.一條直線和一條雙曲線B.兩個點(diǎn)C.兩條直線D.以上都不對
2.如圖,曲線的方程是()
A.x?y?0 B.x?y?0 C.
xy?1 D.
x?1 y3.到原點(diǎn)距離為6的點(diǎn)的軌跡方程是。
4.到x軸的距離與其到y(tǒng)軸的距離之比為2的點(diǎn)的軌跡方程是。
三、例題講解:
例1:已知一條曲線在y軸右方,它上面的每一點(diǎn)到A?2,0?的距離減去它到y(tǒng)軸的距離的差都是2,求這條曲線的方程。
例2:已知P(1,3)過P作兩條互相垂直的直線l
1、l2,它們分別和x軸、y軸交于B、C兩點(diǎn),求線段BC的中點(diǎn)的軌跡方程。
2例3:已知曲線y=x+1和定點(diǎn)A(3,1),B為曲線上任一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)點(diǎn)B在曲線上運(yùn)動時,求點(diǎn)P的軌跡方程。
鞏固練習(xí):
1.長為4的線段AB的兩個端點(diǎn)分別在x軸和y軸上滑動,求AB中點(diǎn)M的軌跡方程。
22.已知△ABC中,B(-2,0),C(2,0)頂點(diǎn)A在拋物線y=x+1移動,求△ABC的重心G的軌跡方程。
思考題:
已知B(-3,0),C(3,0)且三角形ABC中BC邊上的高為3,求三角形ABC的垂心H的軌跡方程。
小結(jié):
1.用直接法求軌跡方程時,所求點(diǎn)滿足的條件并不一定直接給出,需要仔細(xì)分析才能找到。
2.用坐標(biāo)轉(zhuǎn)移法求軌跡方程時要注意所求點(diǎn)和動點(diǎn)之間的聯(lián)系。
作業(yè):
蘇大練習(xí)第57頁例3,教材第72頁第3題、第7題。
高二數(shù)學(xué)教案4
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象、恰當(dāng)?shù)乩脁x解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強(qiáng),思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用xx解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線xx解題
六、教學(xué)過程設(shè)計
【設(shè)計思路】
開門見山,提出問題
例題:
(1)已知a(-2,0),b(2,0)動點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)線段(d)不存在
(2)已知動點(diǎn)m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的.軌跡是()。
(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線
【設(shè)計意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實軸長為,焦距為。以深化對概念的理解。
高二數(shù)學(xué)教案5
[新知初探]
1、向量的數(shù)乘運(yùn)算
。1)定義:規(guī)定實數(shù)λ與向量a的積是一個向量,這種運(yùn)算叫做向量的數(shù)乘,記作:λa,它的長度和方向規(guī)定如下:
、質(zhì)λa|=|λ||a|;
、诋(dāng)λ>0時,λa的方向與a的方向相同;
當(dāng)λ<0時,λa的方向與a的方向相反。
。2)運(yùn)算律:設(shè)λ,μ為任意實數(shù),則有:
、佴耍é蘟)=(λμ)a;
②(λ+μ)a=λa+μa;
、郐耍╝+b)=λa+λb;
特別地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[點(diǎn)睛](1)實數(shù)與向量可以進(jìn)行數(shù)乘運(yùn)算,但不能進(jìn)行加減運(yùn)算,如λ+a,λ—a均無法運(yùn)算。
(2)λa的結(jié)果為向量,所以當(dāng)λ=0時,得到的結(jié)果為0而不是0。
2、向量共線的條件
向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有一個實數(shù)λ,使b=λa。
[點(diǎn)睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時,雖有a與b共線,但不存在實數(shù)λ使b=λa成立;若a=b=0,a與b顯然共線,但實數(shù)λ不,任一實數(shù)λ都能使b=λa成立。
(2)a是非零向量,b可以是0,這時0=λa,所以有λ=0,如果b不是0,那么λ是不為零的實數(shù)。
3、向量的線性運(yùn)算
向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算。對于任意向量a,b及任意實數(shù)λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)
。1)λa的方向與a的方向一致。()
(2)共線向量定理中,條件a≠0可以去掉。()
。3)對于任意實數(shù)m和向量a,b,若ma=mb,則a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1,|b|=2,且a與b方向相同,則下列關(guān)系式正確的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四邊形ABCD中,若=—12,則此四邊形是()
A、平行四邊形B、菱形
C、梯形D、矩形
答案:C
4、化簡:2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的'線性運(yùn)算
[例1]化簡下列各式:
。1)3(6a+b)—9a+13b;
。2)12?3a+2b?—a+12b—212a+38b;
。3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
。2)原式=122a+32b—a—34b=a+34b—a—34b=0。
。3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量線性運(yùn)算的方法
向量的線性運(yùn)算類似于代數(shù)多項式的運(yùn)算,共線向量可以合并,即“合并同類項”“提取公因式”,這里的“同類項”“公因式”指的是向量。
高二數(shù)學(xué)教案6
一、教材分析
推理是高考的重要的內(nèi)容,推理包括合情推理與演繹推理,由于解答高考題的過程就是推理的過程,因此本部分內(nèi)容的考察將會滲透到每一個高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現(xiàn),也可能在解答題中出現(xiàn)。
二、教學(xué)目標(biāo)
(1)知識與能力:了解演繹推理的含義及特點(diǎn),會將推理寫成三段論的形式
(2)過程與方法:了解合情推理和演繹推理的區(qū)別與聯(lián)系
(3)情感態(tài)度價值觀:了解演繹推理在數(shù)學(xué)證明中的重要地位和日常生活中的作用,養(yǎng)成言之有理論證有據(jù)的習(xí)慣。
三、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):演繹推理的含義與三段論推理及合情推理和演繹推理的區(qū)別與聯(lián)系
教學(xué)難點(diǎn):演繹推理的應(yīng)用
四、教學(xué)方法:探究法
五、課時安排:1課時
六、教學(xué)過程
1. 填一填:
、 所有的金屬都能夠?qū)щ,銅是金屬,所以 ;
、 太陽系的大行星都以橢圓形軌道繞太陽運(yùn)行,冥王星是太陽系的大行星,因此 ;
、 奇數(shù)都不能被2整除,20xx是奇數(shù),所以 .
2.討論:上述例子的推理形式與我們學(xué)過的合情推理一樣嗎?
3.小結(jié):
、 概念:從一般性的原理出發(fā),推出某個特殊情況下的結(jié)論,我們把這種推理稱為____________.
要點(diǎn):由_____到_____的推理.
、 討論:演繹推理與合情推理有什么區(qū)別?
③ 思考:所有的金屬都能夠?qū)щ,銅是金屬,所以銅能導(dǎo)電,它由幾部分組成,各部分有什么特點(diǎn)?
小結(jié):三段論是演繹推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
、 舉例:舉出一些用三段論推理的例子.
例1:證明函數(shù) 在 上是增函數(shù).
例2:在銳角三角形ABC中, ,D,E是垂足. 求證:AB的中點(diǎn)M到D,E的距離相等.
當(dāng)堂檢測:
討論:因為指數(shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則結(jié)論是什么?
討論:演繹推理怎樣才能使得結(jié)論正確?
比較:合情推理與演繹推理的區(qū)別與聯(lián)系?
課堂小結(jié)
課后練習(xí)與提高
1.演繹推理是以下列哪個為前提,推出某個特殊情況下的結(jié)論的推理方法( )
A.一般的原理原則; B.特定的.命題;
C.一般的命題; D.定理、公式.
2.因為對數(shù)函數(shù) 是增函數(shù)(大前提),而 是對數(shù)函數(shù)(小前提),所以 是增函數(shù)(結(jié)論).上面的推理的錯誤是( )
A.大前提錯導(dǎo)致結(jié)論錯; B.小前提錯導(dǎo)致結(jié)論錯;
C.推理形式錯導(dǎo)致結(jié)論錯; D.大前提和小前提都錯導(dǎo)致結(jié)論錯.
3.下面幾種推理過程是演繹推理的是( )
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果A和B是兩條平行直線的同旁內(nèi)角,則B =180B.由平面三角形的性質(zhì),推測空間四面體的性質(zhì);.
4.補(bǔ)充下列推理的三段論:
(1)因為互為相反數(shù)的兩個數(shù)的和為0,又因為 與 互為相反數(shù)且________________________,所以 =8.
(2)因為_____________________________________,又因為 是無限不循環(huán)小數(shù),所以 是無理數(shù).
七、板書設(shè)計
八、教學(xué)反思
高二數(shù)學(xué)教案7
簡單的邏輯聯(lián)結(jié)詞
(一)教學(xué)目標(biāo)
1.知識與技能目標(biāo):
(1) 掌握邏輯聯(lián)結(jié)詞且的含義
(2) 正確應(yīng)用邏輯聯(lián)結(jié)詞且解決問題
(3) 掌握真值表并會應(yīng)用真值表解決問題
2.過程與方法目標(biāo):
在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng).
3.情感態(tài)度價值觀目標(biāo):
激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神.
(二)教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):通過數(shù)學(xué)實例,了解邏輯聯(lián)結(jié)詞且的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。
難點(diǎn):
1、正確理解命題Pq真假的規(guī)定和判定.
2、簡潔、準(zhǔn)確地表述命題Pq.
教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。
教學(xué)設(shè)想:在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng).
(三)教學(xué)過程
學(xué)生探究過程:
1、引入
在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的數(shù)學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的'過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
在數(shù)學(xué)中,有時會使用一些聯(lián)結(jié)詞,如且或非。在生活用語中,我們也使用這些聯(lián)結(jié)詞,但表達(dá)的含義和用法與數(shù)學(xué)中的含義和用法不盡相同。下面介紹數(shù)學(xué)中使用聯(lián)結(jié)詞且或非聯(lián)結(jié)命題時的含義和用法。
為敘述簡便,今后常用小寫字母p,q,r,s,表示命題。(注意與上節(jié)學(xué)習(xí)命題的條件p與結(jié)論q的區(qū)別)
2、思考、分析
問題1:下列各組命題中,三個命題間有什么關(guān)系?
、12能被3整除;
②12能被4整除;
、12能被3整除且能被4整除。
學(xué)生很容易看到,在第(1)組命題中,命題③是由命題①②使用聯(lián)結(jié)詞且聯(lián)結(jié)得到的新命題。
問題2:以前我們有沒有學(xué)習(xí)過象這樣用聯(lián)結(jié)詞且聯(lián)結(jié)的命題呢?你能否舉一些例子?
例如:命題p:菱形的對角線相等且菱形的對角線互相平分。
3、歸納定義
一般地,用聯(lián)結(jié)詞且把命題p和命題q聯(lián)結(jié)起來,就得到一個新命題,記作pq,讀作p且q。
命題pq即命題p且q中的且字與下面命題中的且 字的含義相同嗎?
若 xA且xB,則xB。
定義中的且字與命題中的且 字的含義是類似。但這里的邏輯聯(lián)結(jié)詞且與日常語言中的和,并且,以及,既又等相當(dāng),表明前后兩者同時兼有,同時滿足。說明:符號與開口都是向下。
注意:p且q命題中的p、q是兩個命題,而原命題,逆命題,否命題,逆否命題中的p,q是一個命題的條件和結(jié)論兩個部分.
4、命題pq的真假的規(guī)定
你能確定命題pq的真假嗎?命題pq和命題p,q的真假之間有什么聯(lián)系?
引導(dǎo)學(xué)生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個命題的真假之間的關(guān)系的一般規(guī)律。
例如:在上面的例子中,第(1)組命題中,①②都是真命題,所以命題③是真命題。
一般地,我們規(guī)定:
當(dāng)p,q都是真命題時,pq是真命題;當(dāng)p,q兩個命題中有一個命題是假命題時,pq是假命題。
5、例題
例1:將下列命題用且聯(lián)結(jié)成新命題pq的形式,并判斷它們的真假。
(1)p:平行四邊形的對角線互相平分,q:平行四邊形的對角線相等。
(2)p:菱形的對角線互相垂直,q:菱形的對角線互相平分;
(3)p:35是15的倍數(shù),q:35是7的倍數(shù).
解:(1)pq:平行四邊形的對角線互相平分且平行四邊形的對角線相等.也可簡寫成平行四邊形的對角線互相平分且相等.
由于p是真命題,且q也是真命題,所以pq是真命題。
(2)pq:菱形的對角線互相垂直且菱形的對角線互相平分. 也可簡寫成菱形的對角線互相垂直且平分.
由于p是真命題,且q也是真命題,所以pq是真命題。
(3)pq:35是15的倍數(shù)且35是7的倍數(shù). 也可簡寫成35是15的倍數(shù)且是7的倍數(shù).
由于p是假命題, q是真命題,所以pq是假命題。
說明,在用且聯(lián)結(jié)新命題時,如果簡寫,應(yīng)注意保持命題的意思不變.
例2:用邏輯聯(lián)結(jié)詞且改寫下列命題,并判斷它們的真假。
(1)1既是奇數(shù),又是素數(shù);
(2)2是素數(shù)且3是素數(shù);
6.鞏固練習(xí) :P20 練習(xí)第1 , 2題
7.教學(xué)反思:
(1)掌握邏輯聯(lián)結(jié)詞且的含義
(2)正確應(yīng)用邏輯聯(lián)結(jié)詞且解決問題
高二數(shù)學(xué)教案8
一、課前預(yù)習(xí)目標(biāo)
理解并掌握雙曲線的幾何性質(zhì),并能從雙曲線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)出這些性質(zhì),并能具體估計雙曲線的形狀特征。
二、預(yù)習(xí)內(nèi)容
1、雙曲線的幾何性質(zhì)及初步運(yùn)用。
類比橢圓的幾何性質(zhì)。
2。雙曲線的.漸近線方程的導(dǎo)出和論證。
觀察以原點(diǎn)為中心,2a、2b長為鄰邊的矩形的兩條對角線,再論證這兩條對角線即為雙曲線的漸近線。
三、提出疑惑
同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中
課內(nèi)探究
1、橢圓與雙曲線的幾何性質(zhì)異同點(diǎn)分析
2、描述雙曲線的漸進(jìn)線的作用及特征
3、描述雙曲線的離心率的作用及特征
4、例、練習(xí)嘗試訓(xùn)練:
例1。求雙曲線9y2—16x2=144的實半軸長和虛半軸長、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。
解:
解:
5、雙曲線的第二定義
1)。定義(由學(xué)生歸納給出)
2)。說明
(七)小結(jié)(由學(xué)生課后完成)
將雙曲線的幾何性質(zhì)按兩種標(biāo)準(zhǔn)方程形式列表小結(jié)。
作業(yè):
1。已知雙曲線方程如下,求它們的兩個焦點(diǎn)、離心率e和漸近線方程。
。1)16x2—9y2=144;
。2)16x2—9y2=—144。
2。求雙曲線的標(biāo)準(zhǔn)方程:
。1)實軸的長是10,虛軸長是8,焦點(diǎn)在x軸上;
。2)焦距是10,虛軸長是8,焦點(diǎn)在y軸上;
曲線的方程。
點(diǎn)到兩準(zhǔn)線及右焦點(diǎn)的距離。
高二數(shù)學(xué)教案9
教學(xué)目標(biāo)
鞏固二元一次不等式和二元一次不等式組所表示的平面區(qū)域,能用此來求目標(biāo)函數(shù)的最值。
重點(diǎn)難點(diǎn)
理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。
如何擾實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點(diǎn)。
教學(xué)步驟
【新課引入】
我們知道,二元一次不等式和二元一次不等式組都表示平面區(qū)域,在這里開始,教學(xué)又翻開了新的一頁,在今后的學(xué)習(xí)中,我們可以逐步看到它的運(yùn)用。
【線性規(guī)劃】
先討論下面的問題
設(shè),式中變量x、y滿足下列條件
、偾髗的值和最小值。
我們先畫出不等式組①表示的平面區(qū)域,如圖中內(nèi)部且包括邊界。點(diǎn)(0,0)不在這個三角形區(qū)域內(nèi),當(dāng)時,,點(diǎn)(0,0)在直線上。
作一組和平等的直線
可知,當(dāng)l在的右上方時,直線l上的點(diǎn)滿足。
即,而且l往右平移時,t隨之增大,在經(jīng)過不等式組①表示的三角形區(qū)域內(nèi)的點(diǎn)且平行于l的直線中,以經(jīng)過點(diǎn)A(5,2)的直線l,所對應(yīng)的t,以經(jīng)過點(diǎn)的直線,所對應(yīng)的t最小,所以
在上述問題中,不等式組①是一組對變量x、y的'約束條件,這組約束條件都是關(guān)于x、y的一次不等式,所以又稱線性約束條件。
是欲達(dá)到值或最小值所涉及的變量x、y的解析式,叫做目標(biāo)函數(shù),由于又是x、y的解析式,所以又叫線性目標(biāo)函數(shù),上述問題就是求線性目標(biāo)函數(shù)在線性約束條件①下的值和最小值問題。
線性約束條件除了用一次不等式表示外,有時也有一次方程表示。
一般地,求線性目標(biāo)函數(shù)在線性約束條件下的值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題,滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域,在上述問題中,可行域就是陰影部分表示的三角形區(qū)域,其中可行解(5,2)和(1,1)分別使目標(biāo)函數(shù)取得值和最小值,它們都叫做這個問題的解。
高二數(shù)學(xué)教案10
。1)平面向量基本定理的內(nèi)容是什么?
(2)如何定義平面向量基底?
。3)兩向量夾角的定義是什么?如何定義向量的垂直?
[新知初探]
1、平面向量基本定理
條件e1,e2是同一平面內(nèi)的兩個不共線向量
結(jié)論這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2
基底不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底
[點(diǎn)睛]對平面向量基本定理的理解應(yīng)注意以下三點(diǎn):①e1,e2是同一平面內(nèi)的兩個不共線向量;②該平面內(nèi)任意向量a都可以用e1,e2線性表示,且這種表示是的;③基底不,只要是同一平面內(nèi)的兩個不共線向量都可作為基底。
2、向量的夾角
條件兩個非零向量a和b
產(chǎn)生過程
作向量=a,=b,則∠AOB叫做向量a與b的夾角
范圍0°≤θ≤180°
特殊情況θ=0°a與b同向
θ=90°a與b垂直,記作a⊥b
θ=180°a與b反向
[點(diǎn)睛]當(dāng)a與b共線同向時,夾角θ為0°,共線反向時,夾角θ為180°,所以兩個向量的夾角的范圍是0°≤θ≤180°。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)
(1)任意兩個向量都可以作為基底。()
(2)一個平面內(nèi)有無數(shù)對不共線的向量都可作為表示該平面內(nèi)所有向量的基底。()
。3)零向量不可以作為基底中的`向量。()
答案:(1)×(2)√(3)√
2、若向量a,b的夾角為30°,則向量—a,—b的夾角為()
A、60°B、30°
C、120°D、150°
答案:B
3、設(shè)e1,e2是同一平面內(nèi)兩個不共線的向量,以下各組向量中不能作為基底的是()
A、e1,e2B、e1+e2,3e1+3e2
C、e1,5e2D、e1,e1+e2
答案:B
4、在等腰Rt△ABC中,∠A=90°,則向量,的夾角為XXXXXX。
答案:135°
用基底表示向量
[典例]如圖,在平行四邊形ABCD中,設(shè)對角線=a,=b,試用基底a,b表示,。
[解]法一:由題意知,==12=12a,==12=12b。
所以=+=—=12a—12b,
=+=12a+12b,
法二:設(shè)=x,=y,則==y,
又+=,—=,則x+y=a,y—x=b,
所以x=12a—12b,y=12a+12b,
即=12a—12b,=12a+12b。
用基底表示向量的方法
將兩個不共線的向量作為基底表示其他向量,基本方法有兩種:一種是運(yùn)用向量的線性運(yùn)算法則對待求向量不斷進(jìn)行轉(zhuǎn)化,直至用基底表示為止;另一種是通過列向量方程或方程組的形式,利用基底表示向量的性求解。
[活學(xué)活用]
如圖,已知梯形ABCD中,AD∥BC,E,F(xiàn)分別是AD,BC邊上的中點(diǎn),且BC=3AD,=a,=b。試以a,b為基底表示。
解:∵AD∥BC,且AD=13BC,
∴=13=13b。
∵E為AD的中點(diǎn),
∴==12=16b。
∵=12,∴=12b,
∴=++
=—16b—a+12b=13b—a,
=+=—16b+13b—a=16b—a,
=+=—(+)
=—(+)=—16b—a+12b
=a—23b。
高二數(shù)學(xué)教案11
一、學(xué)習(xí)者特征分析
本節(jié)課內(nèi)容是面向高二下學(xué)期的學(xué)生,主要是進(jìn)行思維的訓(xùn)練。學(xué)生在高一的時候已經(jīng)學(xué)過這些數(shù)學(xué)思維方法,但是對這些知識還沒有進(jìn)行概念化的歸納和專門的訓(xùn)練。學(xué)生不知道分析法和綜合法的時候還是會用一點(diǎn),以以往的經(jīng)驗,學(xué)生一旦學(xué)習(xí)概念后,反而覺得難度大,概念混淆,因此,這一教學(xué)內(nèi)容的設(shè)計是針對學(xué)生的這一情況,設(shè)計專題學(xué)習(xí)網(wǎng)站,通過學(xué)生之間經(jīng)過學(xué)習(xí),交流,課后反復(fù)思考的,進(jìn)一步深化概念的過程,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。
二、教學(xué)目標(biāo)
知識與技能
1. 體會數(shù)學(xué)思維中的分析法和綜合法;
2. 會用分析法和綜合法去解決問題。
過程與方法
1. 通過對分析法綜合法的學(xué)習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力;
2. 培養(yǎng)學(xué)生的數(shù)學(xué)閱讀和理解能力;
3. 培養(yǎng)學(xué)生的評價和反思能力。
情感態(tài)度與價值觀
1. 交流、分享運(yùn)用數(shù)學(xué)思維解決問題的喜悅;
2. 提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;
3. 增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心。
三、教學(xué)內(nèi)容
本節(jié)課是數(shù)學(xué)思維訓(xùn)練專題課,專門訓(xùn)練學(xué)生利用分析法和綜合法解題。分析法在數(shù)學(xué)中特指從結(jié)果(結(jié)論)出發(fā)追溯其產(chǎn)生原因的思維方法,即執(zhí)果索因法。綜合思維方法:綜合是以已知性質(zhì)和分析為基礎(chǔ)的,從已知出發(fā)逐步推求位未知的思考方法,即執(zhí)果導(dǎo)因法。這兩種數(shù)學(xué)思維方法是數(shù)學(xué)思維方法中最基礎(chǔ)也是最重要的方法,是學(xué)生的思維訓(xùn)練的重要內(nèi)容。
四、教學(xué)策略的設(shè)計
1. 情境的設(shè)計
情境描述
情境簡要描述
呈現(xiàn)方式
趣味問題
從前有個國王在處死那些犯了罪的.臣子的時候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國王,國王判他死罪,他所面臨的問題是:“這里有三個盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個盒子內(nèi),每只盒子各寫一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個盒子里,就免你一死罪!甭斆鞯膩喩(jīng)過推理而獲知免死金牌所放的盒子,從而救了自己的命,請問亞瑟是如何推理的?
網(wǎng)頁
2. 教學(xué)資源的設(shè)計
資源類型
資源內(nèi)容簡要描述
資源來源
相關(guān)故事
通過有趣的推理故事,如“推理救命的故事”,“寶藏的故事,用于激發(fā)學(xué)生的學(xué)習(xí)興趣。
網(wǎng)上下載
學(xué)習(xí)網(wǎng)站
專題學(xué)習(xí)網(wǎng)站,嵌入了經(jīng)過修改適用于本課的論壇,在線測試等。
自行制作
3. 教學(xué)工具:計算機(jī)
4. 教學(xué)策略:自主探究學(xué)習(xí)策略,任務(wù)驅(qū)動策略、反思策略
5. 教學(xué)環(huán)境:網(wǎng)絡(luò)教室
五、教學(xué)流程設(shè)計
1、創(chuàng)設(shè)情景,吸引學(xué)生注意
教師活動
學(xué)生活動
資源/工具
設(shè)計思想
提出“推理救命問題”
積極思考,尋找方法
學(xué)習(xí)網(wǎng)站
以具有趣味性的故事入手,吸引學(xué)生的注意,點(diǎn)明本節(jié)課的目的。
2、自主探究,獲取知識
教師活動
學(xué)生活動
資源/工具
設(shè)計思想
1、初試牛刀:讓學(xué)生試做思維訓(xùn)練題。
2、挑戰(zhàn)高考題:在高考題中充分體現(xiàn)分析法,綜合法。
3、舉一反三:讓學(xué)生學(xué)會總結(jié)
學(xué)以致用:
4、把本節(jié)的方法應(yīng)用到解決數(shù)學(xué)問題中。
積極思考,互相交流,發(fā)現(xiàn)問題,解決問題。
學(xué)習(xí)網(wǎng)站
1、讓學(xué)生在輕松活潑的氛圍下帶著問題,自主、積極地學(xué)習(xí),有助于培養(yǎng)學(xué)生的自我探索的能力。
2、超級鏈接控制性好,交互性強(qiáng),可讓學(xué)生在較短的時間內(nèi)收集積累更多的信息,拓寬學(xué)生的知識面。
3、培養(yǎng)學(xué)生收集信息、處理信息的能力。
3、總結(jié)概念,深化概念
教師活動
學(xué)生活動
資源/工具
設(shè)計思想
歸納本節(jié)的方法:分析法和綜合法。并指出:數(shù)學(xué)思維的訓(xùn)練不單只是一節(jié)簡單的專題課,我們的同學(xué)在平常多留心身邊事物,多思考問題,不斷提高數(shù)學(xué)思維能力。
體會分析法和綜合法的概念,并在論壇上發(fā)表自己對概念的理解。
學(xué)習(xí)網(wǎng)站論壇
通過對具體問題的概念化,加深對概念的理解。
4、自主交流,知識遷移
教師活動
學(xué)生活動
資源/工具
設(shè)計思想
提出寶藏問題并指導(dǎo)學(xué)生利用BBs論壇進(jìn)行討論
學(xué)生在論壇里充分地發(fā)表自己的看法
學(xué)習(xí)網(wǎng)站論壇
通過自主交流,增強(qiáng)分析問題的能力和解決問題的能力
5、在線測試,評價及反饋
教師活動
學(xué)生活動
資源/工具
設(shè)計思想
利用學(xué)習(xí)網(wǎng)站制作一些簡單的訓(xùn)練題目
獨(dú)立完成在線的測試
學(xué)習(xí)網(wǎng)站
及時反饋課堂學(xué)習(xí)效果。
6、課后任務(wù)
教師活動
學(xué)生活動
資源/工具
設(shè)計思想
布置課后任務(wù):在網(wǎng)絡(luò)上收集推理分析的相關(guān)例子,在學(xué)習(xí)網(wǎng)站的論壇上討論。
記錄要求,并在課后完成。
網(wǎng)絡(luò)資源和學(xué)習(xí)網(wǎng)站
通過課后的任務(wù)訓(xùn)練,進(jìn)一步提高學(xué)生的數(shù)學(xué)思維能力,把思維訓(xùn)練延續(xù)到課堂外。
高二數(shù)學(xué)教案12
第06課時
2、2、3 直線的參數(shù)方程
學(xué)習(xí)目標(biāo)
1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2. 初步掌握運(yùn)用參數(shù)方程解決問題,體會用參數(shù)方程解題的簡便性。
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1、若由 共線,則存在實數(shù) ,使得 ,
2、設(shè) 為 方向上的 ,則 =︱ ︱ ;
3、經(jīng)過點(diǎn) ,傾斜角為 的直線的普通方程為 。
二、新課導(dǎo)學(xué)
探究新知(預(yù)習(xí)教材P35~P39,找出疑惑之處)
1、選擇怎樣的參數(shù),才能使直線上任一點(diǎn)M的坐標(biāo) 與點(diǎn) 的坐標(biāo) 和傾斜角 聯(lián)系起來呢?由于傾斜角可以與方向聯(lián)系, 與 可以用距離或線段 數(shù)量的大小聯(lián)系,這種方向有向線段數(shù)量大小啟發(fā)我們想到利用向量工具建立直線的參數(shù)方程。
如圖,在直線上任取一點(diǎn) ,則 = ,
而直線
的單位方向
向量
=( , )
因為 ,所以存在實數(shù) ,使得 = ,即有 ,因此,經(jīng)過點(diǎn)
,傾斜角為 的直線的參數(shù)方程為:
2.方程中參數(shù)的幾何意義是什么?
應(yīng)用示例
例1.已知直線 與拋物線 交于A、B兩點(diǎn),求線段AB的長和點(diǎn) 到A ,B兩點(diǎn)的距離之積。(教材P36例1)
解:
例2.經(jīng)過點(diǎn) 作直線 ,交橢圓 于 兩點(diǎn),如果點(diǎn) 恰好為線段 的中點(diǎn),求直線 的方程.(教材P37例2)
解:
反饋練習(xí)
1.直線 上兩點(diǎn)A ,B對應(yīng)的參數(shù)值為 ,則 =( )
A、0 B、
C、4 D、2
2.設(shè)直線 經(jīng)過點(diǎn) ,傾斜角為 ,
(1)求直線 的參數(shù)方程;
(2)求直線 和直線 的交點(diǎn)到點(diǎn) 的距離;
(3)求直線 和圓 的兩個交點(diǎn)到點(diǎn) 的距離的.和與積。
三、總結(jié)提升
本節(jié)小結(jié)
1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2. 初步掌握運(yùn)用參數(shù)方程解決問題,體會用參數(shù)方程解題的簡便性。
學(xué)習(xí)評價
一、自我評價
你完成本節(jié)導(dǎo)學(xué)案的情況為( )
A.很好 B.較好 C. 一般 D.較差
課后作業(yè)
1. 已知過點(diǎn) ,斜率為 的直線和拋物線 相交于 兩點(diǎn),設(shè)線段 的中點(diǎn)為 ,求點(diǎn) 的坐標(biāo)。
2.經(jīng)過點(diǎn) 作直線交雙曲線 于 兩點(diǎn),如果點(diǎn) 為線段 的中點(diǎn),求直線 的方程
3.過拋物線 的焦點(diǎn)作傾斜角為 的弦AB,求弦AB的長及弦的中點(diǎn)M到焦點(diǎn)F的距離。
高二數(shù)學(xué)教案13
平面向量共線的坐標(biāo)表示
前提條件a=(x1,y1),b=(x2,y2),其中b≠0
結(jié)論當(dāng)且僅當(dāng)x1y2-x2y1=0時,向量a、b(b≠0)共線
[點(diǎn)睛](1)平面向量共線的坐標(biāo)表示還可以寫成x1x2=y1y2(x2≠0,y2≠0),即兩個不平行于坐標(biāo)軸的共線向量的對應(yīng)坐標(biāo)成比例;
(2)當(dāng)a≠0,b=0時,a∥b,此時x1y2-x2y1=0也成立,即對任意向量a,b都有:x1y2-x2y1=0?a∥b.
[小試身手]
1.判斷下列命題是否正確.(正確的打“√”,錯誤的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()
(2)向量(2,3)與向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),則與a+b共線的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3.已知a=(1,2),b=(x,4),若a∥b,則x等于()
A.-12B.12C.-2D.2
答案:D
4.已知向量a=(-2,3),b∥a,向量b的起點(diǎn)為A(1,2),終點(diǎn)B在x軸上,則點(diǎn)B的坐標(biāo)為________.
答案:73,0
向量共線的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判斷與是否共線?如果共線,它們的方向相同還是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假設(shè)a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設(shè)不成立,故應(yīng)有a,b共線,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共線.
又=-2,∴,方向相反.
綜上,與共線且方向相反.
向量共線的'判定方法
(1)利用向量共線定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共線的坐標(biāo)表達(dá)式x1y2-x2y1=0直接求解.
[活學(xué)活用]
已知a=(1,2),b=(-3,2),當(dāng)k為何值時,ka+b與a-3b平行,平行時它們的方向相同還是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,
解得k=-13,此時ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向.
∴k=-13時,ka+b與a-3b平行且方向相反.
三點(diǎn)共線問題
[典例](1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點(diǎn)共線;
(2)設(shè)向量=(k,12),=(4,5),=(10,k),當(dāng)k為何值時,A,B,C三點(diǎn)
共線?
[解](1)證明:∵=-=(4,8),
=-=(6,12),
∴=32,即與共線.
又∵與有公共點(diǎn)A,∴A,B,C三點(diǎn)共線.
(2)若A,B,C三點(diǎn)共線,則,共線,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有關(guān)三點(diǎn)共線問題的解題策略
(1)要判斷A,B,C三點(diǎn)是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點(diǎn)共線;
(2)使用A,B,C三點(diǎn)共線這一條件建立方程求參數(shù)時,利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數(shù)的表達(dá)式.
高二數(shù)學(xué)教案14
一、教學(xué)目標(biāo):
1、知識與技能目標(biāo)
①理解循環(huán)結(jié)構(gòu),能識別和理解簡單的框圖的功能。
、谀苓\(yùn)用循環(huán)結(jié)構(gòu)設(shè)計程序框圖解決簡單的問題。
2、過程與方法目標(biāo)
通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達(dá),解決問題的過程,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。
3、情感、態(tài)度與價值觀目標(biāo)
通過本節(jié)的自主性學(xué)習(xí),讓學(xué)生感受和體會算法思想在解決具體問題中的意義,增強(qiáng)學(xué)生的創(chuàng)新能力和應(yīng)用數(shù)學(xué)的意識。三、教法分析
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):理解循環(huán)結(jié)構(gòu),能識別和畫出簡單的循環(huán)結(jié)構(gòu)框圖,
難點(diǎn):循環(huán)結(jié)構(gòu)中循環(huán)條件和循環(huán)體的確定。
三、教法、學(xué)法
本節(jié)課我遵循引導(dǎo)發(fā)現(xiàn),循序漸進(jìn)的思路,采用問題探究式教學(xué)。運(yùn)用多媒體,投影儀輔助。倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式。
四、 教學(xué)過程:
(一)創(chuàng)設(shè)情境,溫故求新
引例:寫出求 的值的一個算法,并用框圖表示你的算法。
此例由學(xué)生動手完成,投影展示學(xué)生的做法,師生共同點(diǎn)評。鼓勵學(xué)生一題多解——求創(chuàng)。
設(shè)計引例的目的是復(fù)習(xí)順序結(jié)構(gòu),提出遞推求和的方法,導(dǎo)入新課。此環(huán)節(jié)旨在提升學(xué)生的求知欲、探索欲,使學(xué)生保持良好、積極的情感體驗。
(二)講授新課
1、循序漸進(jìn),理解知識
【1】選擇“累加器”作為載體,借助“累加器”使學(xué)生經(jīng)歷把“遞推求和”轉(zhuǎn)化為“循環(huán)求和”的過程,同時經(jīng)歷初始化變量,確定循環(huán)體,設(shè)置循環(huán)終止條件3個構(gòu)造循環(huán)結(jié)構(gòu)的關(guān)鍵步驟。
(1)將“遞推求和”轉(zhuǎn)化為“循環(huán)求和”的緣由及轉(zhuǎn)化的方法和途徑
引例“求 的值”這個問題的自然求和過程可以表示為:
用遞推公式表示為:
直接利用這個遞推公式構(gòu)造算法在步驟 中使用了 共100個變量,計算機(jī)執(zhí)行這樣的算法時需要占用較大的內(nèi)存。為了節(jié)省變量,充分體現(xiàn)計算機(jī)能以極快的速度進(jìn)行重復(fù)計算的優(yōu)勢,需要從上述遞推求和的步驟 中提取出共同的結(jié)構(gòu),即第n步的結(jié)果=第(n-1)步的結(jié)果+n。若引進(jìn)一個變量 來表示每一步的計算結(jié)果,則第n步可以表示為賦值過程 。
(2)“ ”的含義
利用多媒體動畫展示計算機(jī)中累加器的工作原理,借助形象直觀對知識點(diǎn)進(jìn)行強(qiáng)調(diào)說明① 的作用是將賦值號右邊表達(dá)式 的值賦給賦值號左邊的變量 。
、谫x值號“=”右邊的變量“ ”表示前一步累加所得的和,賦值號“=”左邊的“ ”表示該步累加所得的和,含義不同。
、圪x值號“=”與數(shù)學(xué)中的等號意義不同。 在數(shù)學(xué)中是不成立的。
借助“累加器”既突破了難點(diǎn),同時也使學(xué)生理解了 中 的.變化和 的含義。
(3)初始化變量,設(shè)置循環(huán)終止條件
由 的初始值為0, 的值由1增加到100,可以初始化循環(huán)變量和設(shè)置循環(huán)終止條件。
【2】循環(huán)結(jié)構(gòu)的概念
根據(jù)指定條件決定是否重復(fù)執(zhí)行一條或多條指令的控制結(jié)構(gòu)稱為循環(huán)結(jié)構(gòu)。
教師學(xué)生一起共同完成引例的框圖表示,并由此引出本節(jié)課的重點(diǎn)知識循環(huán)結(jié)構(gòu)的概念。這樣講解既突出了重點(diǎn)又突破了難點(diǎn),同時使學(xué)生體會了問題的抽象過程和算法的構(gòu)建過程。還體現(xiàn)了我們研究問題常用的“由特殊到一般”的思維方式。
2、類比探究,掌握知識
例1:改造引例的程序框圖表示①求 的值
、谇 的值
③求 的值
、芮 的值
此例可由學(xué)生獨(dú)立思考、回答,師生共同點(diǎn)評完成。
通過對引例框圖的反復(fù)改造逐步幫助學(xué)生深入理解循環(huán)結(jié)構(gòu),體會用循環(huán)結(jié)構(gòu)表達(dá)算法,關(guān)鍵要做好三點(diǎn):①確定循環(huán)變量和初始值②確定循環(huán)體③確定循環(huán)終止條件。
高二數(shù)學(xué)教案15
課題:2。1曲線與方程
課時:01
課型:新授課
一、教學(xué)目標(biāo)
。ㄒ唬┲R教學(xué)點(diǎn)
使學(xué)生掌握常用動點(diǎn)的軌跡以及求動點(diǎn)軌跡方程的常用技巧與方法。
(二)能力訓(xùn)練點(diǎn)
通過對求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識的能力。
。ㄈ⿲W(xué)科滲透點(diǎn)
通過對求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動點(diǎn)的軌跡,為學(xué)習(xí)物理等學(xué)科打下扎實的基礎(chǔ)。
二、教材分析
1、重點(diǎn):求動點(diǎn)的軌跡方程的常用技巧與方法。
。ń鉀Q辦法:對每種方法用例題加以說明,使學(xué)生掌握這種方法。)
2、難點(diǎn):作相關(guān)點(diǎn)法求動點(diǎn)的軌跡方法。
。ń鉀Q辦法:先使學(xué)生了解相關(guān)點(diǎn)法的思路,再用例題進(jìn)行講解。)
教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。
教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神。
三、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)引入
大家知道,平面解析幾何研究的主要問題是:
(1)根據(jù)已知條件,求出表示平面曲線的方程;
。2)通過方程,研究平面曲線的性質(zhì)。
我們已經(jīng)對常見曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過這兩個方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來對根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進(jìn)行系統(tǒng)分析。
。ǘ⿴追N常見求軌跡方程的方法
1、直接法
由題設(shè)所給(或通過分析圖形的幾何性質(zhì)而得出)的動點(diǎn)所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡得曲線的方程,這種方法叫直接法。
例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動點(diǎn)P的軌跡方程;
。2)過點(diǎn)A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡。
對(1)分析:
動點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動點(diǎn)P的運(yùn)動規(guī)律:|OP|=2R或|OP|=0。
解:設(shè)動點(diǎn)P(x,y),則有|OP|=2R或|OP|=0。
即x2+y2=4R2或x2+y2=0。
故所求動點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0。
對(2)分析:
題設(shè)中沒有具體給出動點(diǎn)所滿足的幾何條件,但可以通過分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒數(shù)。由學(xué)生演板完成,解答為:
設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM,則OM⊥AM!遦OM·kAM=—1,
其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段。ú缓它c(diǎn))。
2、定義法
利用所學(xué)過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點(diǎn)的軌跡方程,這種方法叫做定義法。這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件。
直平分線l交半徑OQ于點(diǎn)P(見圖2-45),當(dāng)Q點(diǎn)在圓周上運(yùn)動時,求點(diǎn)P的軌跡方程。
分析:
∵點(diǎn)P在AQ的垂直平分線上,∴|PQ|=|PA|。
又P在半徑OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。
故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義
寫出P點(diǎn)的軌跡方程。
解:連接PA ∵l⊥PQ,∴|PA|=|PQ|。
又P在半徑OQ上!鄚PO|+|PQ|=2。
由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓。
3、相關(guān)點(diǎn)法
若動點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程。這種方法稱為相關(guān)點(diǎn)法(或代換法)。
例3 已知拋物線y2=x+1,定點(diǎn)A(3,1)、B為拋物線上任意一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點(diǎn)在拋物線上變動時,求點(diǎn)P的軌跡方程。
分析:
P點(diǎn)運(yùn)動的原因是B點(diǎn)在拋物線上運(yùn)動,因此B可作為相關(guān)點(diǎn),應(yīng)先找出點(diǎn)P與點(diǎn)B的聯(lián)系。
解:設(shè)點(diǎn)P(x,y),且設(shè)點(diǎn)B(x0,y0)
∵BP∶PA=1∶2,且P為線段AB的內(nèi)分點(diǎn)。
4、待定系數(shù)法
求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求。
例4 已知拋物線y2=4x和以坐標(biāo)軸為對稱軸、實軸在y軸上的雙曲
曲線方程。
分析:
因為雙曲線以坐標(biāo)軸為對稱軸,實軸在y軸上,所以可設(shè)雙曲線方
ax2—4b2x+a2b2=0
∵拋物線和雙曲線僅有兩個公共點(diǎn),根據(jù)它們的對稱性,這兩個點(diǎn)的'橫坐標(biāo)應(yīng)相等,因此方程ax2—4b2x+a2b2=0應(yīng)有等根。
∴△=16b4—4a4b2=0,即a2=2b。
。ㄒ韵掠蓪W(xué)生完成)
由弦長公式得:
即a2b2=4b2—a2。
。ㄈ╈柟叹毩(xí)
用十多分鐘時間作一個小測驗,檢查一下教學(xué)效果。練習(xí)題用一小黑板給出。
1、△ABC一邊的兩個端點(diǎn)是B(0,6)和C(0,—6),另兩邊斜率的
2、點(diǎn)P與一定點(diǎn)F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點(diǎn)P的軌跡方程,并說明軌跡是什么圖形?
3、求拋物線y2=2px(p>0)上各點(diǎn)與焦點(diǎn)連線的中點(diǎn)的軌跡方程。
答案:
義法)
由中點(diǎn)坐標(biāo)公式得:
。ㄋ模、教學(xué)反思
求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點(diǎn)法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹。
四、布置作業(yè)
1、兩定點(diǎn)的距離為6,點(diǎn)M到這兩個定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡方程。
2、動點(diǎn)P到點(diǎn)F1(1,0)的距離比它到F2(3,0)的距離少2,求P點(diǎn)的軌跡。
3、已知圓x2+y2=4上有定點(diǎn)A(2,0),過定點(diǎn)A作弦AB,并延長到點(diǎn)P,使3|AB|=2|AB|,求動點(diǎn)P的軌跡方程。
作業(yè)答案:
1、以兩定點(diǎn)A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,得點(diǎn)M的軌跡方程x2+y2=4。
2、∵|PF2|—|PF|=2,且|F1F2|∴P點(diǎn)只能在x軸上且x<1,軌跡是一條射線。
【高二數(shù)學(xué)教案】相關(guān)文章:
高二數(shù)學(xué)教案08-27
高二數(shù)學(xué)教案12-04
中職高二數(shù)學(xué)教案11-07
高二數(shù)學(xué)教案15篇12-05
最新高二數(shù)學(xué)教案09-29