初二數(shù)學(xué)優(yōu)秀教案2篇
作為一位杰出的教職工,通常會被要求編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么問題來了,教案應(yīng)該怎么寫?以下是小編為大家整理的初二數(shù)學(xué)優(yōu)秀教案,歡迎閱讀與收藏。
初二數(shù)學(xué)優(yōu)秀教案1
教學(xué)目的
1. 使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識等邊三角形的性質(zhì)及判定.
2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。
教學(xué)重點:
等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點:
簡潔的邏輯推理。
教學(xué)過程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識,通過推理得到你的'猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60°。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數(shù)。
分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結(jié)果是否一樣?
問題2:求∠1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對的打“√”,錯的打“×”。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°( )
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。
3.P54練習(xí)1、2。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°!叭合一”性質(zhì)在實際應(yīng)用中,只要推出其中一個結(jié)論成立,其他兩個結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個結(jié)論成立的條件。
五、作業(yè):
1.課本P57第7,9題。
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。
初二數(shù)學(xué)優(yōu)秀教案2
一、教學(xué)目標(biāo):
1.經(jīng)歷觀察、發(fā)現(xiàn)、探究中心對稱圖形的有關(guān)概念和基本性質(zhì)的過程,積累一定的審美體驗。
2了解中心對稱圖形及其基本性質(zhì),掌握平行四邊形也是中心對稱圖形。
二、教學(xué)重、難點:
理解中心對稱圖形的概念及其基本性質(zhì)。
三、教學(xué)過程:
(一)創(chuàng)設(shè)問題情境
1.以魔術(shù)創(chuàng)設(shè)問題情境:教師通過撲克牌魔術(shù)的演示引出研究課題,激發(fā)學(xué)生探索“中心對稱圖形”的興趣。
【魔術(shù)設(shè)計】:師取出若干張非中心對稱的撲克牌和一張是中心對稱的牌,按牌面的多數(shù)指向整理好(如上圖),然后請一位同學(xué)上臺任意抽出一張撲克,把這張牌旋轉(zhuǎn)180O后再插入,再請這位同學(xué)洗幾下,展開撲克牌,馬上確定這位同學(xué)抽出的撲克。
(課堂反應(yīng):學(xué)生非常安靜,目不轉(zhuǎn)睛地盯著老師做動作。每完成一個動作之后,學(xué)生就進(jìn)入沉思狀態(tài),接著就是小聲議論。)
師重復(fù)以上活動
2次后提問:
(1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點?
(2)你能說明為什么老師要把抽出的這張牌旋轉(zhuǎn)1800嗎?(小組討論)
(反思:創(chuàng)設(shè)問題情境主要在于下面幾點理由:(1)采取從學(xué)生最熟悉的實際問題情境入手的方式,貼近學(xué)生的生活實際,讓學(xué)生認(rèn)識到數(shù)學(xué)來源于生活,又服務(wù)于生活,進(jìn)一步感悟到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,從而激發(fā)學(xué)生的求知欲。
(2)所有新知識的學(xué)習(xí)都以對相關(guān)具體問題情境的探索作為開始,它們是學(xué)生了解與學(xué)習(xí)這些新知識的有效方法,同時也活躍了課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣。(
3)通過撲克魔術(shù)創(chuàng)設(shè)問題情境,學(xué)生獲得的答案將是豐富的。在最后交流歸納時,他們感覺到,自己在活動中“研究”的成果,對最終形成規(guī)范、正確的結(jié)論是有貢獻(xiàn)的,從而激發(fā)他們更加注意學(xué)習(xí)方式和“研究”方式。這也是對他們從事科學(xué)研究的情感態(tài)度的培養(yǎng)。學(xué)生勤于動手、樂于探究,發(fā)展學(xué)生實踐應(yīng)用能力和創(chuàng)新精神成為可行。)
2.教師揭示謎底。
利用“Z+Z”課件游戲演示牌面,請學(xué)生找一找哪張牌旋轉(zhuǎn)
180O后和原來牌面一樣。
3.學(xué)生通過動手分析上述撲克牌牌面、獨立思考、探究、合作交流等活動,得到答案:
(1)只有一張撲克牌圖案顛倒后和原來牌面一樣。
(2)其余撲克牌顛倒后和原來牌面不一樣,因此,老師事先按牌面的多數(shù)(少數(shù))指向整理好,把任意抽出的一張撲克牌旋轉(zhuǎn)180O后,就可以馬上在一堆撲克牌中找出它。
(反思:本環(huán)節(jié)是在撲克魔術(shù)揭密問題的具體背景下,通過學(xué)生自己的觀察、發(fā)現(xiàn)、總結(jié)、歸納,進(jìn)一步理解中心對稱圖形及其特點,發(fā)展空間觀念,突出了數(shù)學(xué)課堂教學(xué)中的探索性。從而培養(yǎng)了學(xué)生觀察、概括能力,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花。)
(二)學(xué)生分組討論、思考探究:
1.師問:生活中有哪些圖形是與這張撲克牌一樣,旋轉(zhuǎn)180O后和原來一樣?
生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機(jī)的雙葉螺旋槳等。
2.你能將下列各圖分別繞其上的一點旋轉(zhuǎn)180O,使旋轉(zhuǎn)前后的圖形完全重合嗎?(先讓學(xué)生思考,允許有困難的學(xué)生利用 “
Z+Z”演示其旋轉(zhuǎn)過程。)3
.有人用“中心對稱圖形”一詞描述上面的這些現(xiàn)象,你認(rèn)為這個詞是什么含義?
(對于抽象的概念教學(xué),要關(guān)注概念的實際背景與形成過程,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,力求讓學(xué)生采取發(fā)現(xiàn)式的學(xué)習(xí)方式,通過“想一想”、“議一議”、 “動一動”等多種活動形式,幫助學(xué)生克服記憶概念的學(xué)習(xí)方式。)
(三)教師明晰,建立模型
1給出“中心對稱圖形”定義:在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180O,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2.對比軸對稱圖形與中心對稱圖形:(列出表格,加深印象)
軸對稱圖形中心對稱圖形有一條對稱軸——直線有一個對稱中心——點沿對稱軸對折繞對稱中心旋轉(zhuǎn)1880O對折后與原圖形重合
旋轉(zhuǎn)后與原圖形重合
(四)解釋、應(yīng)用與拓廣
1.教師用“Z+Z
智能教育平臺”演示旋轉(zhuǎn)過程,驗證上述圖形的中心對稱性,引導(dǎo)學(xué)生討論、探究中心對稱圖形的性質(zhì)。
(利用計算機(jī)《Z+Z智能教育平臺》技術(shù),通過圖形旋轉(zhuǎn)給出中心對稱圖形的一個幾何解釋,目的是使學(xué)生對中心對稱圖形有一個更直觀的認(rèn)識。)
2.探究中心對稱圖形的性質(zhì)
板書:中心對稱圖形上的每一對對應(yīng)點所連成的線段都被對稱中心平分。
3.師問:怎樣找出一個中心對稱圖形的對稱中心?
(兩組對應(yīng)點連結(jié)所成線段的交點)
4平行四邊形是中心對稱圖形嗎?若是,請找出其對稱中心,你怎樣驗證呢?
學(xué)生分組討論交流并回答。
討論:根據(jù)以上的驗證方法,你能驗證平行四邊形的哪些性質(zhì)?學(xué)生分組討論交流并回答。
討論:根據(jù)以上的驗證方法,你能驗證平行四邊形的哪些性質(zhì)?
5逆向問題:如果一個四邊形是中心對稱圖形,那么這個四邊形一定是平行四邊形嗎?
學(xué)生討論回答。
6你還能找出哪些多邊形是中心對稱圖形?
(反思:合作學(xué)習(xí)是新課程改革中追求的'一種學(xué)習(xí)方法,但合作學(xué)習(xí)必須建立在學(xué)生的獨立探索的基礎(chǔ)上,否則合作學(xué)習(xí)將會流于形式,不能起到應(yīng)有的效果,所于我在上課時強(qiáng)調(diào)學(xué)生先獨立思考,再由當(dāng)天的小組長組織進(jìn)行,并由當(dāng)天的記錄員記錄小組成員的活動情況(每個小組有一張課堂合作學(xué)習(xí)參考表,見附錄)。)
(五)拓展與延伸
1中國文字豐富多彩、含義深刻,有許多是中心對稱的,你能找出幾個嗎?
2.正六邊形的對稱中心怎樣確定?
(六)魔術(shù)表演:
1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉(zhuǎn)180o后,得到右圖,你知道哪一張撲克被旋轉(zhuǎn)過嗎?
2.學(xué)生小組活動:
以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設(shè)計魔術(shù),相互之間做游戲。
(新教材的編寫,著重突出了用數(shù)學(xué)活動呈現(xiàn)教學(xué)內(nèi)容,而不是以例題和習(xí)題的形式出現(xiàn)。通過多種形式的實踐活動,讓學(xué)生親歷探究與現(xiàn)實生活聯(lián)系密切的學(xué)習(xí)過程,使學(xué)生在合作中學(xué)習(xí),在競爭收獲,共同分享成功的喜悅,同時能調(diào)節(jié)課堂的氣氛,培養(yǎng)學(xué)生之間的情感。只有這樣,學(xué)生的創(chuàng)新意識和動手意識才會充分地發(fā)揮出來。)
四、案例小結(jié)
《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“實踐活動是培養(yǎng)學(xué)生進(jìn)行主動探索與合作交流的重要途徑。”“教師應(yīng)該充分利用學(xué)生已有的生活經(jīng)驗,隨時引導(dǎo)學(xué)生把所學(xué)的數(shù)學(xué)知識應(yīng)用到生活中去,解決身邊的數(shù)學(xué)問題,了解數(shù)學(xué)在現(xiàn)實生活中的作用,體會學(xué)習(xí)數(shù)學(xué)的重要性。”這兩段話,正體現(xiàn)了新教材的重要變化——關(guān)注學(xué)生的生活世界,學(xué)習(xí)內(nèi)容更加貼近實際,同時強(qiáng)調(diào)了數(shù)學(xué)教學(xué)讓學(xué)生動手實踐的重要意義和作用。
現(xiàn)實性的生活內(nèi)容,能夠賦予數(shù)學(xué)足夠的活力和靈性。對許多學(xué)生來說,“撲克”和“游戲”是很感興趣的內(nèi)容,因此,也具有現(xiàn)實性,即回歸生活(玩撲克牌)——讓學(xué)生感知學(xué)習(xí)數(shù)學(xué)可以讓生活增添許多樂趣,同時也讓學(xué)生感知到數(shù)學(xué)就在我們身邊,學(xué)生學(xué)習(xí)的數(shù)學(xué)應(yīng)當(dāng)是生活中的數(shù)學(xué),是學(xué)生“自己身邊的數(shù)學(xué)”。這樣,數(shù)學(xué)來源于生活,又必須回歸于生活,學(xué)生就能在游戲中學(xué)得輕松愉快,整個課堂顯得生動活潑。
【初二數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:
初二數(shù)學(xué)優(yōu)秀教案4篇11-21
數(shù)學(xué)初二教案11-24
最新數(shù)學(xué)初二教案09-28
初二數(shù)學(xué)教案11-02
【推薦】初二數(shù)學(xué)教案12-23
初二數(shù)學(xué)教案【熱】12-24
【薦】初二數(shù)學(xué)教案12-19