丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-04-19 08:28:06 八年級數(shù)學教案 我要投稿

八年級數(shù)學教案模板集錦6篇

  作為一位無私奉獻的人民教師,通常會被要求編寫教案,借助教案可以讓教學工作更科學化。如何把教案做到重點突出呢?以下是小編整理的八年級數(shù)學教案6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

八年級數(shù)學教案模板集錦6篇

八年級數(shù)學教案 篇1

  一、教學目的

  1.使學生進一步理解自變量的取值范圍和函數(shù)值的意義.

  2.使學生會用描點法畫出簡單函數(shù)的圖象.

  二、教學重點、難點

  重點:1.理解與認識函數(shù)圖象的意義.

  2.培養(yǎng)學生的看圖、識圖能力.

  難點:在畫圖的三個步驟的列表中,如何恰當?shù)剡x取自變量與函數(shù)的對應值問題.

  三、教學過程

  復習提問

  1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

  2.結合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

  3.說出下列各點所在象限或坐標軸:

  新課

  1.畫函數(shù)圖象的'方法是描點法.其步驟:

  (1)列表.要注意適當選取自變量與函數(shù)的對應值.什么叫“適當”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關鍵點.比如畫函數(shù)y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

  一般地,我們把自變量與函數(shù)的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數(shù)的對應值列出表來.

  (2)描點.我們把表中給出的有序實數(shù)對,看作點的坐標,在直角坐標系中描出相應的點.

  (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

  一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).

  2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.

  小結

  本節(jié)課的重點是讓學生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.

  練習

  ①選用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)

 、谘a充題:畫出函數(shù)y=5x-2的圖象.

  作業(yè)

  選用課本習題.

  四、教學注意問題

  1.注意滲透數(shù)形結合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數(shù)的解析式、列表、圖象三者結合起來,更有利于認識函數(shù)的本質特征.

  2.注意充分調動學生自己動手畫圖的積極性.

  3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養(yǎng)學生看圖、識圖的能力.

八年級數(shù)學教案 篇2

  一、學生起點分析

  學生已經(jīng)了勾股定理,并在先前其他內容學習中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結論?

  反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經(jīng)具備這樣的意識,但具體研究中

  可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。

  二、學習任務分析

  本節(jié)課是北師大版數(shù)學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學目標:

  ● 知識與技能目標

  1.理解勾股定理逆定理的具體內容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標

  1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;

  2.經(jīng)歷從實驗到驗證的過程,發(fā)展學生的數(shù)學歸納能力。

  ● 情感與態(tài)度目標

  1.體驗生活中的數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣;

  2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

  教學重點

  理解勾股定理逆定理的具體內容。

  三、教法學法

  1.教學方法:實驗猜想歸納論證

  本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學結論已有一定的體驗

  但數(shù)學思維嚴謹?shù)耐瑢W總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:

  (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;

  (2)從學生活動出發(fā),通過以舊引新,順勢教學過程;

  (3)利用探索,研究手段,通過思維深入,領悟教學過程。

  2.課前準備

  教具:教材、電腦、多媒體課件。

  學具:教材、筆記本、課堂練習本、文具。

  四、教學過程設計

  本節(jié)課設計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內容:

  情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

  2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

  意圖:

  通過情境的創(chuàng)設引入新課,激發(fā)學生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎。

  第二環(huán)節(jié):合作探究

  內容1:探究

  下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

  意圖:

  通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過學生充分討論后,匯總各小組實驗結果發(fā)現(xiàn):①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

  從上面的分組實驗很容易得出如下結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  內容2:說理

  提問:有同學認為測量結果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

  意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  滿足 的三個正整數(shù),稱為勾股數(shù)。

  注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

  活動3:反思總結

  提問:

  1.同學們還能找出哪些勾股數(shù)呢?

  2.今天的結論與前面學習勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

  4.通過今天同學們合作探究,你能體驗出一個數(shù)學結論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

  意圖:進一步讓學生認識該定理與勾股定理之間的關系

  第三環(huán)節(jié):小試牛刀

  內容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

 、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習,加強對勾股定理及勾股定理逆定理認識及應用

  效果

  每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

  第四環(huán)節(jié):登高望遠

  內容:

  1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?

  解答:由題意畫出相應的`圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

  效果:

  學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形( ),以便于計算。

  第五環(huán)節(jié):鞏固提高

  內容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網(wǎng)格進行計算,從而解決問題。

  效果:

  學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應用。

  第六環(huán)節(jié):交流小結

  內容:

  師生相互交流總結出:

  1.今天所學內容①會利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

  2.從今天所學內容及所作練習中總結出的經(jīng)驗與方法:①數(shù)學是源于生活又服務于生活的;②數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形, 便于計算。

  意圖:

  鼓勵學生結合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識。

  效果:

  學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

  第七環(huán)節(jié):布置作業(yè)

  課本習題1.4第1,2,4題。

  五、教學反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。

  2.注重引導學生積極參與實驗活動,從中體驗任何一個數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

  4.注重對學習新知理解應用偏困難的學生的進一步關注。

  5.對于勾股定理的逆定理的論證可根據(jù)學生的實際情況做適當調整,不做要求。

  由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據(jù)自己班級學生的狀況進行適當?shù)膭h減或調整。

  附:板書設計

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠

八年級數(shù)學教案 篇3

  1.請同學們回憶(≥0,b≥0)是如何得到的?

  2.學生觀察下面的例子,并計算:

  由學生總結上面兩個式的關系得:

  類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

 。ā0,b0)

  使學生回憶起二次根式乘法的運算方法的推導過程.

  類似地,請每個同學再舉一個例子,

  請學生們思考為什么b的取值范圍變小了?

  與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

  對比二次根式的乘法推導出除法的運算方法

  增強學生的自信心,并從一開始就使他們參與到推導過程中來.

  對學生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

  強化學生的解題格式一定要標準.

  教學過程設計

  問題與情境師生行為設計意圖

  活動二自我檢測

  活動三挑戰(zhàn)逆向思維

  把反過來,就得到

  (≥0,b0)

  利用它就可以進行二次根式的化簡.

  例2化簡:

 。1)

 。2)(b≥0).

  解:(1)(2)練習2化簡:

 。1)(2)活動四談談你的收獲

  1.商的算術平方根的性質(注意公式成立的條件).

  2.會利用商的'算術平方根的性質進行簡單的二次根式的化簡.

  找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

  找學生口述解題過程,教師將過程寫在黑板上.

  請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

  請學生自己談收獲,并總結本節(jié)課的主要內容.

  為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.

  此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.

  讓學困生在自己做題時有一個參照.

  充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

八年級數(shù)學教案 篇4

  教材分析

  本章屬于“數(shù)與代數(shù)”領域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學學習中具有重要的意義。本章內容建立在已經(jīng)學習了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節(jié)課的知識是學習本章的基礎,為后續(xù)章節(jié)的學習作鋪墊,因此,學得好壞直接關乎到后續(xù)章節(jié)的學習效果。

  學情分析

  本節(jié)課知識是學習整章的基礎,因此,教學的好壞直接影響了后續(xù)章節(jié)的學習。學生在學習本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關概念,并且本節(jié)課的知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數(shù)冪的乘法的運算性質的'過程是一個由特殊到一般的認識過程,并且注意導出這一性質的每一步的根據(jù)。

  從學生做練習和作業(yè)來看,大部分學生都已經(jīng)掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

  教學目標

  1、知識與技能:

  掌握同底數(shù)冪乘法的運算性質,能熟練運用性質進行同底數(shù)冪乘法運算。

  2、過程與方法:

 。1)通過同底數(shù)冪乘法性質的推導過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;

  (2)通過性質運用幫助學生理解字母表達式所代表的數(shù)量關系,進一步積累選擇適當?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經(jīng)驗。

  3、情感態(tài)度與價值觀:

  (1)通過引例問題情境的創(chuàng)設,誘發(fā)學生的求知欲,進一步認識數(shù)學與生活的密切聯(lián)系;

 。2)通過性質的推導體會“特殊。

八年級數(shù)學教案 篇5

  一、教學目標

  1.使學生理解并掌握反比例函數(shù)的概念

  2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式

  3.能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想

  二、重、難點

  1.重點:理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式

  2.難點:理解反比例函數(shù)的概念

  3.難點的突破方法:

 。1)在引入反比例函數(shù)的概念時,可適當復習一下第11章的正比例函數(shù)、一次函數(shù)等相關知識,這樣以舊帶新,相互對比,能加深對反比例函數(shù)概念的理解

 。2)注意引導學生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實數(shù);看函數(shù)y的取值范圍,因為k≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點和不同點。

 。3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式

  三、例題的意圖分析

  教材第46頁的思考題是為引入反比例函數(shù)的概念而設置的,目的是讓學生從實際問題出發(fā),探索其中的數(shù)量關系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。

  教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學生進一步體會函數(shù)所蘊含的“變化與對應”的思想,特別是函數(shù)與自變量之間的單值對應關系。

  補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數(shù)的概念。補充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關系式,有一定難度,但能提高學生分析、解決問題的能力。

  四、課堂引入

  1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的'一般形式是怎樣的?

  2.體育課上,老師測試了百米賽跑,那么,時間與平均速度的關系是怎樣的?

  五、例習題分析

  例1.見教材P47

  分析:因為y是x的反比例函數(shù),所以先設,再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。

  例1.(補充)下列等式中,哪些是反比例函數(shù)

 。1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根據(jù)反比例函數(shù)的定義,關鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式

  例2.(補充)當m取什么值時,函數(shù)是反比例函數(shù)?

  分析:反比例函數(shù)(k≠0)的另一種表達式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯誤

八年級數(shù)學教案 篇6

   一、學習目標及重、難點:

  1、了解方差的定義和計算公式。

  2、理解方差概念的產(chǎn)生和形成的過程。

  3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。

  難點:理解方差公式

  二、自主學習:

  (一)知識我先懂:

  方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用

  來表示。

  給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  (二)自主檢測小練習:

  1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。

  2、甲、乙兩組數(shù)據(jù)如下:

  甲組:10 9 11 8 12 13 10 7;

  乙組:7 8 9 10 11 12 11 12.

  分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.

  三、新課講解:

  引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、 10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  問:(1)哪種農作物的苗長的比較高(我們可以計算它們的`平均數(shù): = )

  (2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )

  歸納: 方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。

  (一)例題講解:

  例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩(wěn)定?為什么?、

  測試次數(shù) 第1次 第2次 第3次 第4次 第5次

  段巍 13 14 13 12 13

  金志強 10 13 16 14 12

  給力提示:先求平均數(shù),在利用公式求解方差。

  (二)小試身手

  1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定

  去參加比賽。

  1、求下列數(shù)據(jù)的眾數(shù):

  (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

  2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?

  四、課堂小結

  方差公式:

  給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  每課一首詩:求方差,有公式;先平均,再求差;

  求平方,再平均;所得數(shù),是方差。

  五、課堂檢測:

  1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

  七、學習小札記:

  寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

初中八年級數(shù)學教案11-03

人教版八年級數(shù)學教案11-04

八年級上冊數(shù)學教案11-09

八年級的數(shù)學教案15篇12-14

八年級下冊數(shù)學教案01-01

八年級數(shù)學教案人教版01-03

八年級數(shù)學教案【熱門】12-03

【熱門】八年級數(shù)學教案11-29