關(guān)于八年級(jí)數(shù)學(xué)教案模板五篇
作為一位兢兢業(yè)業(yè)的人民教師,常常要根據(jù)教學(xué)需要編寫(xiě)教案,編寫(xiě)教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。教案要怎么寫(xiě)呢?下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案5篇,希望對(duì)大家有所幫助。
八年級(jí)數(shù)學(xué)教案 篇1
一、知識(shí)與技能
1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā)、討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)、函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
二、過(guò)程與方法
1、經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).
2、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí).
三、情感態(tài)度與價(jià)值觀
1、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.
2、通過(guò)分組討論,培養(yǎng)學(xué)生合作交流意識(shí)和探索精神.
教學(xué)重點(diǎn):理解和領(lǐng)會(huì)反比例函數(shù)的概念.
教學(xué)難點(diǎn):領(lǐng)悟反比例的概念.
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動(dòng)1
問(wèn)題:下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?
(1)京滬線鐵路全程為1463km,乘坐某次列車(chē)所用時(shí)間t(單位:h)隨該列車(chē)平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問(wèn)答或交流.學(xué)生用自己的語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.
教師組織學(xué)生討論,提問(wèn)學(xué)生,師生互動(dòng).
在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:
、倌芊穹e極主動(dòng)地合作交流.
②能否用語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系.
、勰芊窳私馑懻摰暮瘮(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.
分析及解答:(1)
;(2)
。唬3)
其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);
上面的函數(shù)關(guān)系式,都具有
的形式,其中k是常數(shù).
二、聯(lián)系生活,豐富聯(lián)想
活動(dòng)2
下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?
。1)一個(gè)游泳池的`容積為20xxm3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;
。2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;
(3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積S的變化而變化.
師生行為
學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.
教師操作課件,提出問(wèn)題,關(guān)注學(xué)生思考的過(guò)程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:
(1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;
(2)能否積極主動(dòng)地參與小組活動(dòng);
(3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念.
分析及解答:(1)
;(2)
;(3)
概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成
的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.
活動(dòng)3
做一做:
一個(gè)矩形的面積為20cm2, 相鄰的兩條邊長(zhǎng)為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
師生行為:
學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問(wèn)題,關(guān)注學(xué)生思考.此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否順利抽象反比例函數(shù)的模型;
、蹖W(xué)生能否積極主動(dòng)地合作、交流;
活動(dòng)4
問(wèn)題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?
問(wèn)題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6
(1)寫(xiě)出y與x的函數(shù)關(guān)系式:
(2)求當(dāng)x=4時(shí),y的值.
師生行為:
學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo).在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;
②學(xué)生能否積極主動(dòng)地參與小組活動(dòng).
分析及解答:
1、只有xy=123是反比例函數(shù).
2、分析:因?yàn)閥是x的反比例函數(shù),所以
,再把x=2和y=6代入上式就可求出常數(shù)k的值.
解:(1)設(shè)
,因?yàn)閤=2時(shí),y=6,所以有
解得k=12
因此
。2)把x=4代入
,得
三、鞏固提高
活動(dòng)5
1、已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=8.
。1)寫(xiě)出y與x之間的函數(shù)關(guān)系式.
。2)求y=2時(shí)x的值.
2、y是x的反比例函數(shù),下表給出了x與y的一些值:
。1)寫(xiě)出這個(gè)反比例函數(shù)的表達(dá)式;
。2)根據(jù)函數(shù)表達(dá)式完成上表.
學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.
四、課時(shí)小結(jié)
反比例函數(shù)概念形成的過(guò)程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問(wèn)題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過(guò)程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過(guò)舉例、說(shuō)理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.
八年級(jí)數(shù)學(xué)教案 篇2
教學(xué)目標(biāo):
1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過(guò)程,在活動(dòng)中發(fā)展學(xué)生的探究意識(shí)和合作交流的習(xí)慣;
2。索并掌握平行四邊形的性質(zhì),并能簡(jiǎn)單應(yīng)用;
3。在探索活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí)。
教學(xué)重點(diǎn):平行四邊形性質(zhì)的探索。
教學(xué)難點(diǎn):平行四邊形性質(zhì)的理解。
教學(xué)準(zhǔn)備:多媒體課件
教學(xué)過(guò)程
第一環(huán)節(jié):實(shí)踐探索,直觀感知(5分鐘,動(dòng)手實(shí)踐、探索、感知,學(xué)生進(jìn)一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)
1。小組活動(dòng)一
內(nèi)容:
問(wèn)題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對(duì)折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個(gè)四邊形。
。1)你拼出了怎樣的四邊形?與同桌交流一下;
(2)給出小明拼出的四邊形,它們的對(duì)邊有怎樣的位置關(guān)系?說(shuō)說(shuō)你的理由,請(qǐng)用簡(jiǎn)捷的語(yǔ)言刻畫(huà)這個(gè)圖形的特征。
2。小組活動(dòng)二
內(nèi)容:生活中常見(jiàn)到平行四邊形的實(shí)例有什么呢?你能舉例說(shuō)明嗎?
第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動(dòng)手、動(dòng)嘴,全班交流)
小組活動(dòng)3:
用 一張半透明的紙復(fù)制你剛才畫(huà)的平行四邊形,并將復(fù)制 后的四邊形繞一個(gè)頂點(diǎn)旋轉(zhuǎn)180,你能平移該紙片,使它與你畫(huà)的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對(duì)邊、對(duì)角分別有什么關(guān)系?能用別的方法驗(yàn)證你的結(jié)論嗎?
。1)讓學(xué)生動(dòng)手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;
。2)學(xué)生交流、議論;
。3)教師利用多媒體展示實(shí)踐的過(guò)程。
第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過(guò)說(shuō)理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的'數(shù)學(xué)本質(zhì)。)
實(shí)踐 探索內(nèi)容
(1)通過(guò)剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對(duì)角線把它分成的兩個(gè)三角形全等。
。2)可以通過(guò)推理來(lái)證明這個(gè)結(jié)論,如圖連結(jié)AC。
∵ 四邊形ABCD是平行四邊形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過(guò)議一議,練一練,學(xué)生進(jìn)一步理解平行四邊形的性質(zhì),并進(jìn)行簡(jiǎn)單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時(shí)從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識(shí)平行四邊形的本質(zhì)特征。)
1;顒(dòng)內(nèi)容:
(1)議一議:如果已知平行四邊形的一個(gè)內(nèi)角度數(shù),能確定其它三個(gè)內(nèi)角的度數(shù)嗎?
A(學(xué)生思考、議論)
B總結(jié)歸納:可以確定其它三個(gè)內(nèi)角的度數(shù)。
由平行四邊形對(duì) 邊分邊平行 得到鄰角互補(bǔ);又由于平行四邊形對(duì)角相等,由此已知平行四邊形的一個(gè)內(nèi)角的度數(shù),可以確定其它三個(gè)角度數(shù)。
。2)練一練(P99隨堂練習(xí))
練1 如圖:四邊形ABCD是平行四邊形。
。1)求ADC、BCD度數(shù)
。2)邊AB、BC的度數(shù)、長(zhǎng)度。
練2 四邊形ABCD是平行四邊形
(1)它的四條邊中哪些 線段可以通過(guò)平移相到得到?
。2)設(shè)對(duì)角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說(shuō)說(shuō)理由。
歸 納:平行四邊形的性質(zhì):平行四邊形的對(duì)角線互相平分。
第五環(huán)節(jié) 評(píng)價(jià)反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)
活動(dòng)內(nèi)容
師生相互交流、反思、總結(jié)。
。1)經(jīng)歷了對(duì)平行四邊形的特征探索,你有什么感受和收獲?給自己一個(gè)評(píng)價(jià)。
。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點(diǎn)?
(3)本節(jié)學(xué)習(xí)到了什么?(知識(shí)上、方法上)
考一考:
1。 ABCD中,B=60,則A= ,C= ,D= 。
2。 ABCD中,A比B大20,則C= 。
3。 ABCD中,AB=3,BC=5,則AD= CD= 。
4。 ABCD中,周長(zhǎng)為40cm,△ABC周長(zhǎng)為25,則對(duì)角線AC=( )cm。
布置作業(yè)
課本習(xí)題4。1
A組(學(xué)優(yōu)生)1 、2
B組(中等生)1、2
C組(后三分之一生)1、2
教學(xué)反思
八年級(jí)數(shù)學(xué)教案 篇3
學(xué)習(xí)目標(biāo):
1、知道線段的垂直平分線的概念,探索并掌握成軸對(duì)稱的兩個(gè)圖形全等,對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對(duì)稱的性質(zhì)的活動(dòng)過(guò)程 ,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力.
3、利用軸對(duì)稱的基本性質(zhì)解決實(shí)際問(wèn)題。
學(xué)習(xí)重點(diǎn):靈活運(yùn)用對(duì)應(yīng)點(diǎn)所連的線段被 對(duì)稱軸垂直平分、對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等等性質(zhì)。
學(xué)習(xí)難點(diǎn):軸對(duì)稱的性質(zhì)的理解和拓展運(yùn)用。
學(xué)習(xí)過(guò)程 :
一、探索活動(dòng)
如右圖所示,在紙上任意畫(huà)一點(diǎn)A,把紙對(duì)折,用針在 點(diǎn)A處穿孔,再把紙展開(kāi),并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請(qǐng)同學(xué)們按要求畫(huà)點(diǎn)、折紙、扎孔,仔細(xì)觀察你 所做的`圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會(huì)垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對(duì)稱軸MN就是對(duì)稱點(diǎn)A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫(huà)一點(diǎn)B,同樣地,折紙、穿孔、展開(kāi),并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫(huà)一點(diǎn)C,并仿照上面進(jìn)行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對(duì)稱有哪些性質(zhì)?
6.軸對(duì)稱的性質(zhì):
(1)成軸對(duì)稱的兩個(gè)圖形全等.
(2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對(duì)稱點(diǎn)分別是 ,線段AC、AB的對(duì)應(yīng)線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測(cè)量的方法驗(yàn)證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說(shuō)明軸對(duì)稱圖形對(duì)稱點(diǎn)的連線一定 互相平行嗎?
(5)延長(zhǎng)線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級(jí)數(shù)學(xué)教案 篇4
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡(jiǎn)單的平移作圖
、俅_定個(gè)圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。
、谧髌揭坪蟮膱D形的方法:
、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
⑶任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個(gè)圖形全等。
3.簡(jiǎn)單的旋轉(zhuǎn)作圖
⑴已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的`圖形。
⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
、厶剿髟搱D案的形成過(guò)程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
⑸旋轉(zhuǎn)變換與軸對(duì)稱變換的組合;⑹軸對(duì)稱變換與平移變換的組合。
八年級(jí)數(shù)學(xué)教案 篇5
一、學(xué)習(xí)目標(biāo):
1、會(huì)推導(dǎo)兩數(shù)差的平方公式,會(huì)用式子表示及用文字語(yǔ)言敘述;
2、會(huì)運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。
二、學(xué)習(xí)過(guò)程:
請(qǐng)同學(xué)們快速閱讀課本第27—28頁(yè)的內(nèi)容,并完成下面的練習(xí)題:
(一)探索
1、計(jì)算: (a - b) =
方法一: 方法二:
方法三:
2、兩數(shù)差的'平方用式子表示為_(kāi)________________________;
用文字語(yǔ)言敘述為_(kāi)__________________________ 。
3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?
。ǘ┈F(xiàn)學(xué)現(xiàn)用
利用兩數(shù)差的平方公式計(jì)算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
。ㄈ┖献鞴リP(guān)
靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)達(dá)標(biāo)訓(xùn)練
1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、計(jì)算:
( a - b) ( x -2y )
3、有一邊長(zhǎng)為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?
(四)提升
1、本節(jié)課你學(xué)到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)的數(shù)學(xué)教案15篇12-14
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27