有關(guān)八年級(jí)數(shù)學(xué)教案錦集六篇
作為一名老師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。教案應(yīng)該怎么寫(xiě)呢?下面是小編幫大家整理的八年級(jí)數(shù)學(xué)教案6篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
八年級(jí)數(shù)學(xué)教案 篇1
一、學(xué)生起點(diǎn)分析
通過(guò)前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長(zhǎng)都是勾股數(shù),甚至有些直角三角形的邊長(zhǎng)連有理數(shù)都不是,例如:①腰長(zhǎng)為1的等腰直角三角形的底邊長(zhǎng)不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長(zhǎng)不是有理數(shù),這為引入“新數(shù)”奠定了必要性.
二、教學(xué)任務(wù)分析
《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書(shū)八年級(jí)(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個(gè)課時(shí)完成,第1課時(shí)讓學(xué)生感受無(wú)理數(shù)的存在,初步建立無(wú)理數(shù)的印象,結(jié)合勾股定理知識(shí),會(huì)根據(jù)要求畫(huà)線段;第2課時(shí)借助計(jì)算器感受無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),會(huì)判斷一個(gè)數(shù)是無(wú)理數(shù).本課是第1課時(shí),學(xué)生將在具體的實(shí)例中,通過(guò)操作、估算、分析等活動(dòng),感受無(wú)理數(shù)的客觀存在性和引入的必要性,并能判斷一個(gè)數(shù)是不是有理數(shù).
本節(jié)課的教學(xué)目標(biāo)是:
、偻ㄟ^(guò)拼圖活動(dòng),讓學(xué)生感受客觀世界中無(wú)理數(shù)的存在;
②能判斷三角形的某邊長(zhǎng)是否為無(wú)理數(shù);
、蹖W(xué)生親自動(dòng)手做拼圖活動(dòng),培養(yǎng)學(xué)生的動(dòng)手能力和探索精神;
、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對(duì)有理數(shù)和無(wú)理數(shù)的理解;
三、教學(xué)過(guò)程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了6個(gè)教學(xué)環(huán)節(jié):
第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):質(zhì)疑
內(nèi)容:【想一想】
、乓粋(gè)整數(shù)的平方一定是整數(shù)嗎?
、埔粋(gè)分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?
目的:作必要的知識(shí)回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問(wèn)題的說(shuō)理.
效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用
第二環(huán)節(jié):課題引入
內(nèi)容:1.【算一算】
已知一個(gè)直角三角形的兩條直角邊長(zhǎng)分別為1和2,算一算斜邊長(zhǎng) 的平方 ,并提出問(wèn)題: 是整數(shù)(或分?jǐn)?shù))嗎?
2.【剪剪拼拼】
把邊長(zhǎng)為1的兩個(gè)小正方形通過(guò)剪、拼,設(shè)法拼成一個(gè)大正方形,你會(huì)嗎?
目的:選取客觀存在的“無(wú)理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”.
效果:巧設(shè)問(wèn)題背景,順利引入本節(jié)課題.
第三環(huán)節(jié):獲取新知
內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】
【議一議】: 已知 ,請(qǐng)問(wèn):① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?
【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?
釋2.滿足 的 為什么不是分?jǐn)?shù)?
【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無(wú)理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)
【找一找】:在下列正方形網(wǎng)格中,先找出長(zhǎng)度為有理數(shù)的線段,再找出長(zhǎng)度不是有理數(shù)的線段
目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過(guò)程,讓學(xué)生充分感受“新數(shù)”(無(wú)理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣
效果:學(xué)生感受到無(wú)理數(shù)產(chǎn)生的過(guò)程,確定存在一種數(shù)與以往學(xué)過(guò)的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.
第四環(huán)節(jié):應(yīng)用與鞏固
內(nèi)容:【畫(huà)一畫(huà)1】→【畫(huà)一畫(huà)2】→【仿一仿】→【賽一賽】
【畫(huà)一畫(huà)1】:在右1的正方形網(wǎng)格中,畫(huà)出兩條線段:
1.長(zhǎng)度是有理數(shù)的線段
2.長(zhǎng)度不是有理數(shù)的'線段
【畫(huà)一畫(huà)2】:在右2的正方形網(wǎng)格中畫(huà)出四個(gè)三角形 (右1)
2.三邊長(zhǎng)都是有理數(shù)
2.只有兩邊長(zhǎng)是有理數(shù)
3.只有一邊長(zhǎng)是有理數(shù)
4.三邊長(zhǎng)都不是有理數(shù)
【仿一仿】:例:在數(shù)軸上表示滿足 的
解: (右2)
仿:在數(shù)軸上表示滿足 的
【賽一賽】:右3是由五個(gè)單位正方形組成的紙片,請(qǐng)你把
它剪成三塊,然后拼成一個(gè)正方形,你會(huì)嗎?試試看! (右3)
目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上
效果:加深了對(duì)“新知”的理解,鞏固了本課所學(xué)知識(shí).
第五環(huán)節(jié):課堂小結(jié)
內(nèi)容:
1.通過(guò)本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請(qǐng)問(wèn)你有什么收獲與體會(huì)?
2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個(gè)嗎?
3.除了本課所認(rèn)識(shí)的非有理數(shù)的數(shù)以外,你還能找到嗎?
目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.
效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會(huì)進(jìn)行概括總結(jié).
第六環(huán)節(jié):布置作業(yè)
習(xí)題2.1
六、教學(xué)設(shè)計(jì)反思
。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動(dòng)力
大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動(dòng)的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過(guò)學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來(lái),然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.
。ǘ┗橄鬄榫唧w
常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過(guò)一系列數(shù)學(xué)活動(dòng)開(kāi)啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語(yǔ)言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過(guò)程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺(jué)得新數(shù)并不抽象.
。ㄈ⿵(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)
既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來(lái)表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無(wú)理數(shù)的教學(xué)奠好基.
八年級(jí)數(shù)學(xué)教案 篇2
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;
3.通過(guò)對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問(wèn)題。
4.通過(guò)三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過(guò)對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點(diǎn):
三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機(jī)
教學(xué)方法:
互動(dòng)式,談話法
教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境,自然引入
把問(wèn)題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
問(wèn)題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問(wèn)題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?
問(wèn)題2 你能用幾何推理來(lái)論證得到的關(guān)系嗎?
對(duì)于問(wèn)題1絕大多數(shù)學(xué)生都能回答出來(lái)(小學(xué)學(xué)過(guò)的),問(wèn)題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書(shū)課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺(jué)本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問(wèn)質(zhì)疑,探究嘗試
(1)求證:三角形三個(gè)內(nèi)角的和等于
讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來(lái),再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫(huà)顯示具體情景。然后,圍繞問(wèn)題設(shè)計(jì)以下幾個(gè)問(wèn)題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問(wèn)題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)
什么角?問(wèn)題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?
(把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)
問(wèn)題3 由圖中AB與CD的`關(guān)系,啟發(fā)我們畫(huà)一條什么樣的線,作為解決問(wèn)題的橋梁?
其中問(wèn)題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問(wèn)題3學(xué)生經(jīng)過(guò)思考會(huì)畫(huà)出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫(huà)這條線?畫(huà)這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問(wèn)題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問(wèn)題的目的。
(2)通過(guò)類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個(gè)內(nèi)角之和為定值
,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問(wèn)題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?
問(wèn)題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?
問(wèn)題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?
其中問(wèn)題1學(xué)生很容易得出,提出問(wèn)題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過(guò)分析討論,得出結(jié)論并書(shū)寫(xiě)證明過(guò)程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書(shū)寫(xiě)格式,加強(qiáng)學(xué)生書(shū)寫(xiě)能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。
3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴(yán)格書(shū)寫(xiě)解題過(guò)程
八年級(jí)數(shù)學(xué)教案 篇3
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).
數(shù)學(xué)思考
能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問(wèn)題能力和計(jì)算能力.
解決問(wèn)題
通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.
情感態(tài)度
在應(yīng)用等腰梯形的性質(zhì)的過(guò)程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).
重點(diǎn)
等腰梯形的性質(zhì)及其應(yīng)用.
難點(diǎn)
解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)的內(nèi)容和目的
活動(dòng)1想一想
活動(dòng)2說(shuō)一說(shuō)
活動(dòng)3畫(huà)一畫(huà)
活動(dòng)4做—做
活動(dòng)5練一練
活動(dòng)6理一理
觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.
了解梯形定義、各部分名稱及分類.
通過(guò)畫(huà)圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.
探究得到等腰梯形的性質(zhì).
通過(guò)解決具體問(wèn)題,尋找解決梯形問(wèn)題的方法.
通過(guò)整理回顧,鞏固知識(shí)、提高能力、滲透思想.
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?
演示圖片,學(xué)生欣賞.
結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對(duì)邊平行而另一組對(duì)邊不平行.
由現(xiàn)實(shí)中實(shí)際問(wèn)題入手,設(shè)置問(wèn)題情境,引出本課主題.通過(guò)學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.
[活動(dòng)2]
梯形定義 一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.
學(xué)生根據(jù)梯形概念畫(huà)出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.
通過(guò)類比,培養(yǎng)學(xué)生歸納、總結(jié)的.能力.
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
一些基本概念
。1)(如圖):底、腰、高.
。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
。3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.
學(xué)生在小學(xué)已經(jīng)對(duì)梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽(tīng)學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;
②上、下底的概念是由底的長(zhǎng)短來(lái)定義的,而并不是指位置來(lái)說(shuō)的.
熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.
[活動(dòng)3]
畫(huà)一畫(huà)
在下列所給圖中的每個(gè)三角形中畫(huà)一條線段,
(1)怎樣畫(huà)才能得到一個(gè)梯形?
(2)在哪些三角形中,能夠得到一個(gè)等腰梯形?
在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.
教師參與小組活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流.針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.
本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:
。1)學(xué)生在活動(dòng)過(guò)程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.
。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.
。3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見(jiàn)解,傾聽(tīng)他人的意見(jiàn),對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.
等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來(lái)研究.尤其是根據(jù)等腰三角形是軸對(duì)稱圖形,可得到等腰梯形是軸對(duì)稱圖形這條性質(zhì),為活動(dòng)4種開(kāi)展探究奠定了基礎(chǔ).
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)4]
做—做
探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問(wèn)題的思想).
在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.
。1)這個(gè)圖形是軸對(duì)稱圖形嗎?對(duì)稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫(huà)圖并通過(guò)觀察猜想;
。2)這個(gè)等腰梯形的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?
學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫(huà)圖過(guò)程,觀察圖形,思考教師提出的問(wèn)題,猜想、驗(yàn)證、歸納結(jié)論.
針對(duì)不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).
師生共同歸納:
、俚妊菪问禽S對(duì)稱圖形,上下底的中點(diǎn)連線是對(duì)稱軸.
、诘妊菪蝺裳嗟龋
、鄣妊菪瓮坏咨系膬蓚(gè)角相等.
、艿妊菪蔚膬蓷l對(duì)角線相等.
教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見(jiàn)的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.
[活動(dòng)5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長(zhǎng).
師生共同分析,尋找解決問(wèn)題的方法和策略.
例1是等腰梯形性質(zhì)的直接運(yùn)用,請(qǐng)學(xué)生分析、解答,教師聆聽(tīng),同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).
分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問(wèn)題.
其方法是:平移一腰,過(guò)點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過(guò)題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問(wèn)題的基本思想和方法就是通過(guò)添加適當(dāng)?shù)妮o助線,把梯形問(wèn)題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問(wèn)題來(lái)解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過(guò)點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見(jiàn)識(shí).
[活動(dòng)6]
1.小結(jié)
2.布置作業(yè)
。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長(zhǎng)和面積.
。2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
(3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長(zhǎng)DE交CB延長(zhǎng)線于點(diǎn)F,由全等可得結(jié)論)
師生歸納總結(jié):
解決梯形問(wèn)題常用的方法:
(1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);
。2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);
。3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);
。4)“平移對(duì)角線”:使兩條對(duì)角線在同一個(gè)三角形中(圖4);
。5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長(zhǎng)與下底延長(zhǎng)線交于一點(diǎn),構(gòu)成三角形(圖5).
盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過(guò)程.
梳理本節(jié)課應(yīng)用過(guò)的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.
學(xué)生通過(guò)獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問(wèn)題,及時(shí)查漏補(bǔ)缺.
八年級(jí)數(shù)學(xué)教案 篇4
5 14.3.2.2 等邊三角形(二)
教學(xué)目標(biāo)
掌握等邊三角形的性質(zhì)和判定方法.
培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力.
教學(xué)重點(diǎn)
等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn)
等邊三角形性質(zhì)的應(yīng)用
教學(xué)過(guò)程
I創(chuàng)設(shè)情境,提出問(wèn)題
回顧上節(jié)課講過(guò)的'等邊三角形的有關(guān)知識(shí)
1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
、僭谶匒B、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
、圻^(guò)邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大。
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
III課堂小結(jié)
1、等腰三角形和性質(zhì)
2、等腰三角形的條件
V布置作業(yè)
1.教科書(shū)第147頁(yè)練習(xí)1、2
2.選做題:
(1)教科書(shū)第150頁(yè)習(xí)題14.3第ll題.
(2)已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
。3)《課堂感悟與探究》
5
八年級(jí)數(shù)學(xué)教案 篇5
知識(shí)要點(diǎn)
1、函數(shù)的概念:一般地,在某個(gè)變化過(guò)程中,有兩個(gè) 變量x和 y,如果給定一個(gè)x值,
相應(yīng)地就確定了一個(gè)y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。
2、一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時(shí),稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).
3、正比例函數(shù)y=kx的性質(zhì)
(1)、正比例函數(shù)y=kx的圖象都經(jīng)過(guò)
原點(diǎn)(0,0),(1,k)兩點(diǎn)的一條直線;
(2)、當(dāng)k0時(shí),圖象都經(jīng)過(guò)一、三象限;
當(dāng)k0時(shí),圖象都經(jīng)過(guò)二、四象限
(3)、當(dāng)k0時(shí),y隨x的增大而增大;
當(dāng)k0時(shí),y隨x的增大而減小。
4、一次函數(shù)y=kx+b的性質(zhì)
(1)、經(jīng)過(guò)特殊點(diǎn):與x軸的交點(diǎn)坐標(biāo)是 ,
與y軸的交點(diǎn)坐標(biāo)是 .
(2)、當(dāng)k0時(shí),y隨x的增大而增大
當(dāng)k0時(shí),y隨x的增大而減小
(3)、k值相同,圖象是互相平行
(4)、b值相同,圖象相交于同一點(diǎn)(0,b)
(5)、影響圖象的兩個(gè)因素是k和b
、賙的正負(fù)決定直線的方向
、赽的正負(fù)決定y軸交點(diǎn)在原點(diǎn)上方或下方
5.五種類型一次函數(shù)解析式的確定
確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。
(1)、根據(jù)直線的解析式和圖像上一個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例1、若函數(shù)y=3x+b經(jīng)過(guò)點(diǎn)(2,-6),求函數(shù)的解析式。
解:把點(diǎn)(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函數(shù)的解析式為:y=3x-12
(2)、根據(jù)直線經(jīng)過(guò)兩個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例2、直線y=kx+b的圖像經(jīng)過(guò)A(3,4)和點(diǎn)B(2,7),
求函數(shù)的表達(dá)式。
解:把點(diǎn)A(3,4)、點(diǎn)B(2,7)代入y=kx+b,得
,解得:
函數(shù)的解析式為:y=-3x+13
(3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式
例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時(shí)間x
(小時(shí))之間的關(guān)系.求油箱里所剩油y(升)與行駛時(shí)間x
(小時(shí))之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。
(4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式
例4、如圖2,將直線 向上平移1個(gè)單位,得到一個(gè)一次
函數(shù)的圖像,那么這個(gè)一次函數(shù)的解析式是 .
解:直線 經(jīng)過(guò)點(diǎn)(0,0)、點(diǎn)(2,4),直線 向上平移1個(gè)單位
后,這兩點(diǎn)變?yōu)?0,1)、(2,5),設(shè)這個(gè)一次函數(shù)的解析式為 y=kx+b,
得 ,解得: ,函數(shù)的解析式為:y=2x+1
(5)、根據(jù)直線的對(duì)稱性,確定函數(shù)的解析式
例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對(duì)稱,求k、b的值。
例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對(duì)稱,求k、b的值。
例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點(diǎn)對(duì)稱,求k、b的值。
經(jīng)典訓(xùn)練:
訓(xùn)練1:
1、已知梯形上底的長(zhǎng)為x,下底的長(zhǎng)是10,高是 6,梯形的面積y隨上底x的變化而變化。
(1)梯形的面積y與上底的長(zhǎng)x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?
(2)若y是x的函數(shù),試寫(xiě)出y與x之間的函數(shù)關(guān)系式 。
訓(xùn)練2:
1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函數(shù)有___ __;正比例函數(shù)有____________(填序號(hào)).
2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )
A.k1 B.k-1 C.k1 D.k為任意實(shí)數(shù).
3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.
訓(xùn)練3:
1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.
2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過(guò)的象限是____,它與x軸的交 點(diǎn)坐標(biāo)是____,與y軸的交點(diǎn)坐標(biāo)是____.
4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過(guò)原點(diǎn),則k=_____;
若y隨x的增大而增大,則k__________.
5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )
訓(xùn)練4:
1、 正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(-3,5),寫(xiě)出這正比例函數(shù)的解析式.
2、已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,1)和(-1,-3).求此一次函數(shù)的解析式 .
3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。
4、已知一次函數(shù)y=kx+b,在x=0時(shí)的值為4,在x=-1時(shí)的值為-2,求這個(gè)一次函數(shù)的解析式。
5、已知y-1與x成正比例,且 x=-2時(shí),y=-4.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=3時(shí),求y的值.
一、填空題(每題2分,共26分)
1、已知 是整數(shù),且一次函數(shù) 的圖象不過(guò)第二象限,則 為 .
2、若直線 和直線 的交點(diǎn)坐標(biāo)為 ,則 .
3、一次函數(shù) 和 的圖象與 軸分別相交于 點(diǎn)和 點(diǎn), 、 關(guān)于 軸對(duì)稱,則 .
4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時(shí) , 時(shí), ,則當(dāng) 時(shí), .
5、函數(shù) ,如果 ,那么 的取值范圍是 .
6、一個(gè)長(zhǎng) ,寬 的矩形場(chǎng)地要擴(kuò)建成一個(gè)正方形場(chǎng)地,設(shè)長(zhǎng)增加 ,寬增加 ,則 與 的'函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).
7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時(shí), 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .
8、已知一次函數(shù) 和 的圖象交點(diǎn)的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .
9、已知一次函數(shù) 的圖象經(jīng)過(guò)點(diǎn) ,且它與 軸的交點(diǎn)和直線 與 軸的交點(diǎn)關(guān)于 軸對(duì)稱,那么這個(gè)一次函數(shù)的解析式為 .
10、一次函數(shù) 的圖象過(guò)點(diǎn) 和 兩點(diǎn),且 ,則 , 的取值范圍是 .
11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時(shí), 是正比例函數(shù).
12、 為 時(shí),直線 與直線 的交點(diǎn)在 軸上.
13、已知直線 與直線 的交點(diǎn)在第三象限內(nèi),則 的取值范圍是 .
二、選擇題(每題3分,共36分)
14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )
15、若直線 與 的交點(diǎn)在 軸上,那么 等于( )
A.4 B.-4 C. D.
16、直線 經(jīng)過(guò)一、二、四象限,則直線 的圖象只能是圖4中的( )
17、直線 如圖5,則下列條件正確的是( )
18、直線 經(jīng)過(guò)點(diǎn) , ,則必有( )
A.
19、如果 , ,則直線 不通過(guò)( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是
A. B. C. D.都不對(duì)
21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )
圖6
22、已知一次函數(shù) 與 的圖像都經(jīng)過(guò) ,且與 軸分別交于點(diǎn)B, ,則 的面積為( )
A.4 B.5 C.6 D.7
23、已知直線 與 軸的交點(diǎn)在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
24、已知 ,那么 的圖象一定不經(jīng)過(guò)( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時(shí),甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達(dá)距A站22千米處.設(shè)甲從P處出發(fā) 小時(shí),距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )
三、解答題(1~6題每題8分,7題10分,共58分)
26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點(diǎn),直線 與 軸交于點(diǎn)D,四邊形OBCD(O是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)A的橫坐標(biāo)是 ,求這個(gè)一次函數(shù)解析式.
27、一次函數(shù) ,當(dāng) 時(shí),函數(shù)圖象有何特征?請(qǐng)通過(guò)不同的取值得出結(jié)論?
28、某油庫(kù)有一大型儲(chǔ)油罐,在開(kāi)始的8分鐘內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的油進(jìn)至24噸(原油罐沒(méi)儲(chǔ)油)后將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.
(1)試分別寫(xiě)出這一段時(shí)間內(nèi)油的儲(chǔ)油量Q(噸)與進(jìn)出油的時(shí)間t(分)的函數(shù)關(guān)系式.
(2)在同一坐標(biāo)系中,畫(huà)出這三個(gè)函數(shù)的圖象.
29、某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月不超過(guò)100度時(shí),按每度0.57元計(jì)費(fèi);每月用電超過(guò)100度時(shí),其中的100度按原標(biāo)準(zhǔn)收費(fèi);超過(guò)部分按每度0.50元計(jì)費(fèi).
(1)設(shè)用電 度時(shí),應(yīng)交電費(fèi) 元,當(dāng) 100和 100時(shí),分別寫(xiě)出 關(guān)于 的函數(shù)關(guān)系式.
(2)小王家第一季度交納電費(fèi)情況如下:
月份 一月份 二月份 三月份 合計(jì)
交費(fèi)金額 76元 63元 45元6角 184元6角
問(wèn)小王家第一季度共用電多少度?
30、某地上年度電價(jià)為0.8元,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時(shí), =0.8.
(1)求 與 之間的函數(shù)關(guān)系式;
(2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門(mén)的收益將比上年度增加20%?[收益=用電量(實(shí)際電價(jià)-成本價(jià))]
31、汽車從A站經(jīng)B站后勻速開(kāi)往C站,已知離開(kāi)B站9分時(shí),汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫(xiě)出汽車與B站距離 與B站開(kāi)出時(shí)間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?
32、甲乙兩個(gè)倉(cāng)庫(kù)要向A、B兩地運(yùn)送水泥,已知甲庫(kù)可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫(kù)到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄元/(噸、千米)表示每噸水泥運(yùn)送1千米所需人民幣)
路程/千米 運(yùn)費(fèi)(元/噸、千米)
甲庫(kù) 乙?guī)?甲庫(kù) 乙?guī)?/p>
A地 20 15 12 12
B地 25 20 10 8
(1)設(shè)甲庫(kù)運(yùn)往A地水泥 噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫(huà)出它的圖象(草圖).
(2)當(dāng)甲、乙兩庫(kù)各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?
八年級(jí)數(shù)學(xué)教案 篇6
總課時(shí):7課時(shí) 使用人:
備課時(shí)間:第八周 上課時(shí)間:第十周
第4課時(shí):5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識(shí)與技能
1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過(guò)找點(diǎn)、連線、觀察,確定圖形的大致形狀的問(wèn)題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過(guò)程與方法
1.經(jīng)歷畫(huà)坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過(guò)程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過(guò)由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過(guò)程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。
情感態(tài)度與價(jià)值觀
通過(guò)生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過(guò)程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫(xiě)出它的坐標(biāo),反過(guò)來(lái),已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的'內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來(lái)。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來(lái)。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺(jué)得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫(huà)。各人分工,每人畫(huà)一小題?茨膫(gè)小組做得最快?
(出示學(xué)生的作品)畫(huà)出是 這樣的嗎?這幅圖畫(huà)很美,你們覺(jué)得它像什么?
這個(gè)圖形像一棟房子旁邊還有一棵大樹(shù)。
3.做一做
(出示投影)
在書(shū)上已建立的直角坐標(biāo)系畫(huà),要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫(huà)圖)
(拿出一位做對(duì)的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來(lái)。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺(jué)得它像什么?(像移動(dòng)的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過(guò)找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫(huà)出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫(xiě)出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
八年級(jí)的數(shù)學(xué)教案15篇12-14