對數(shù)函數(shù)
教學(xué)目標(biāo)
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.
(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
教學(xué)建議
教材分析
(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時(shí)又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).
(2) 本節(jié)的教學(xué)重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).
(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn).
教法建議
(1) 對數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時(shí),既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.
教學(xué)設(shè)計(jì)示例
對數(shù)函數(shù)
教學(xué)目標(biāo)
1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡單問題.
2. 通過對數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類討論的思想.
3. 通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動學(xué)生學(xué)習(xí)的積極性.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).
難點(diǎn)是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).
教學(xué)方法
啟發(fā)研討式
教學(xué)用具
投影儀
教學(xué)過程
一. 引入新課
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實(shí)質(zhì)是研究兩個(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學(xué)生說出 是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個(gè)學(xué)生口答求反函數(shù)的過程:
由 得 .又 的值域?yàn)?sub> ,
所求反函數(shù)為 .
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
2.8對數(shù)函數(shù) (板書)
一. 對數(shù)函數(shù)的概念
1. 定義:函數(shù) 的反函數(shù) 叫做對數(shù)函數(shù).
由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識是什么?
教師可提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識,從而找出對數(shù)函數(shù)的定義域?yàn)?sub> ,對數(shù)函數(shù)的值域?yàn)?sub> ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .
在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).
二.對數(shù)函數(shù)的圖像與性質(zhì) (板書)
1. 作圖方法
提問學(xué)生打算用什么方法來畫函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.
具體操作時(shí),要求學(xué)生做到:
(1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等).
(2) 畫出直線 .
(3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對稱點(diǎn) 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出
和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
2. 草圖.
教師畫完圖后再利用投影儀將 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)
3. 性質(zhì)
(1) 定義域:
(2) 值域:
由以上兩條可說明圖像位于 軸的右側(cè).
(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點(diǎn)即以 軸為漸近線.
(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對稱,也不關(guān)于 軸對稱.
(5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的
當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的.
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
三.簡單應(yīng)用 (板書)
1. 研究相關(guān)函數(shù)的性質(zhì)
例1. 求下列函數(shù)的定義域:
(1) (2) (3)
先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.
2. 利用單調(diào)性比較大小 (板書)
例2. 比較下列各組數(shù)的大小
(1) 與 ; (2) 與 ;
(3) 與 ; (4) 與 .
讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對數(shù)函數(shù)利用單調(diào)性來比大小.最后讓學(xué)生以其中一組為例寫出詳細(xì)的比較過程.
三.鞏固練習(xí)
練習(xí):若 ,求 的取值范圍.
四.小結(jié)
五.作業(yè) 略
板書設(shè)計(jì)
2.8對數(shù)函數(shù)
一. 概念
1. 定義 2.認(rèn)識
二.圖像與性質(zhì)
1.作圖方法
2.草圖
圖1 圖2
3.性質(zhì)
(1) 定義域(2)值域(3)截距(4)奇偶性(5)單調(diào)性
三.應(yīng)用
1.相關(guān)函數(shù)的研究
例1 例2
練習(xí)
探究活動
(1) 已知 是函數(shù) 的反函數(shù),且 都有意義.
、 求 ;
、 試比較 與4 的大小,并說明理由.
(2) 設(shè)常數(shù) 則當(dāng) 滿足什么關(guān)系時(shí), 的解集為
答案:
(1) ① ;
②當(dāng) 時(shí), <4 ;當(dāng) 時(shí), 4
(2) .
【對數(shù)函數(shù)】相關(guān)文章:
高一數(shù)學(xué)對數(shù)函數(shù)教案08-26
高一數(shù)學(xué)對數(shù)函數(shù)教案7篇12-21
高一數(shù)學(xué)對數(shù)函數(shù)教案(7篇)12-22
高一數(shù)學(xué)對數(shù)函數(shù)教案(集合7篇)01-08
高一數(shù)學(xué)對數(shù)函數(shù)教案(集錦7篇)01-10
高一數(shù)學(xué)對數(shù)函數(shù)教案匯編7篇01-11
高一數(shù)學(xué)對數(shù)函數(shù)教案(通用7篇)01-09