- 相關(guān)推薦
平行四邊形的判定
教學(xué)建議
1.重點(diǎn) 平行四邊形的判定定理
重點(diǎn)分析 平行四邊形的判定方法涉及平行四邊形元素的各方面,同時(shí)它又與平行四邊形的性質(zhì)聯(lián)系,判定一個(gè)四邊形是否為平行四邊形是利用平行四邊形性質(zhì)解決其他問題的基礎(chǔ),所以平行四邊形的判定定理是本節(jié)的重點(diǎn).
2.難點(diǎn) 靈活運(yùn)用判定定理證明平行四邊形
難點(diǎn)分析 平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn).
3.關(guān)于平行四邊形判定的教法建議
本節(jié)研究平行四邊形的判定方法,重點(diǎn)是四個(gè)判定定理,這也是本章的重點(diǎn)之一.
1.教科書首先指出,用定義可以判定平行四邊形.然后從平行四邊形的性質(zhì)定理的逆命題出發(fā),來探索平行四邊形的判定定理.因此在開始的教學(xué)引入中,要充分調(diào)動(dòng)學(xué)生的情感因素,盡可能利用形式多樣的多媒體課件,激發(fā)學(xué)生興趣,使學(xué)生能很快參與進(jìn)來.
2.素質(zhì)教育的主旨是發(fā)揮學(xué)生的主體因素,讓學(xué)生自主獲取知識(shí).本章重點(diǎn)中前三個(gè)判定定理的順序與它的性質(zhì)定理相對(duì)應(yīng),因此在講授新課時(shí),建議采用實(shí)驗(yàn)式教學(xué)模式或探索式教學(xué)模式:在證明每個(gè)判定定理時(shí),由學(xué)生自己去判斷命題成立與否,并根據(jù)過去所學(xué)知識(shí)去驗(yàn)證自己的結(jié)論,比較各種方法的優(yōu)劣,這樣使每個(gè)學(xué)生都積極參與到教學(xué)中,自己去實(shí)驗(yàn),去探索,去思考,去發(fā)現(xiàn),在動(dòng)手動(dòng)腦中得到的結(jié)論會(huì)更深刻――同時(shí)也要注意保護(hù)學(xué)生的參與積極性.
3.平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn).因此在例題講解時(shí),建議采用啟發(fā)式教學(xué)模式,根據(jù)題目中具體條件結(jié)合圖形引導(dǎo)學(xué)生根據(jù)分析法解題程序從條件或結(jié)論出發(fā),由學(xué)生自己去思考,去分析,充分發(fā)揮學(xué)生的主體作用,對(duì)學(xué)生靈活掌握熟練應(yīng)用各種判定定理會(huì)有幫助.
教學(xué)設(shè)計(jì)示例1
[教學(xué)目標(biāo)] 通過本節(jié)課教學(xué),使學(xué)生訓(xùn)練掌握平行四邊形的各條判定定理,并能靈活地運(yùn)用平行四邊形的性質(zhì)定理和判定定理及以前學(xué)過的知識(shí)進(jìn)行有關(guān)證明,培養(yǎng)學(xué)生的邏輯思維能力。
[教學(xué)過程]
一、準(zhǔn)備題系列
1.復(fù)習(xí)舊知識(shí):前面我們學(xué)習(xí)了平行四邊形的性質(zhì),哪位同學(xué)能敘述一下。(答對(duì)者記分,答錯(cuò)的另點(diǎn)同學(xué)補(bǔ)充)
2.小實(shí)驗(yàn):有一塊平行四喧形的玻璃片,假如不小心碰碎了解部分(如圖所示),同學(xué)們想想看,有沒有辦法把原來的平行四邊形重新畫出來?
(讓學(xué)生思考討論,再各自畫圖,畫好后互相交流畫法,教師巡回檢查。對(duì)個(gè)別差生稍加點(diǎn)撥,最后請(qǐng)學(xué)生回答畫圖方法) 學(xué)生可能想到的畫法有:⑴ 分別過A、C作DC、DA的平行線,兩平行線相交于B; ⑵過C作DA的平行線,再在這平行線上截取CB=DA,連結(jié)BA;⑶ 分別以A、C為圓心,以DC、DA的長為半徑畫弧,兩弧相交于B,連結(jié)AB、CB。
還有一種一法,學(xué)生不易想到,即由平行四邊形對(duì)角線的特性,引導(dǎo)學(xué)生得出 連結(jié)AC,取AC的中點(diǎn)O,再連結(jié)DO,并延長DO至B,使BO=DO,連結(jié)AB、CD。
二、引入新課
上面作出的四邊形是否都是平行四邊形呢?請(qǐng)同學(xué)們猜一猜。生答后師指出這就是今天所要不得 研究的問題“平行四邊形的判定”(板書課題)。
三、嘗試議練
1.要判定我們剛才畫出的四邊形是不是平行四邊形,應(yīng)當(dāng)加以證明。第一種畫法,由平行四邊形的定義可知,它是平行四邊形(定義可作性質(zhì)也可作判定)。
2.現(xiàn)在我們來看看第二種畫法,這就是平行四邊形判定定理一(翻開課本看它的文字?jǐn)⑹觯U?qǐng)想想,一組對(duì)邊平行且相等的四邊形究竟是不是平行四邊形呢?這里已知是什么?求證是什么?請(qǐng)寫出。
自學(xué)課本上的證明過程,看后提問:這個(gè)證明題不作輔助線行不行?為什么?(因?yàn)橐C平行線,一般要證兩角相等,或互補(bǔ),要證兩角相等,一般要證全等三角形,而這里沒有三角形,要連一對(duì)角線才有三角形)
3.再看第三種畫法,在兩組對(duì)邊分別相等的情況下是不是平行四邊形?教師寫出已知、求證,請(qǐng)兩位學(xué)生上臺(tái)證明,其余在課堂練習(xí)本上做。(注意考慮要不要添輔助線)
完成證明后提問哪些學(xué)生是用判定定理一落千丈證明的?哪些是用定義證明的?(解題后思考)
四、變式練習(xí)
1.再看看第四種畫法,可知,已各條件是四邊形的對(duì)角線互相一平分,這種情況下它是不平行四邊形?
閱讀課本上的判定定理之后,要求學(xué)生思考用什么方法求證最簡(jiǎn)便?(應(yīng)該用判定定理一) 2.變式題
⑴兩組對(duì)角分別相等的四邊形是不是平行四邊形?為什么?(練習(xí)第1題)(口述證明,不要示書面證明)(問要不要添輔助線?)
⑵一組對(duì)邊平行,一組對(duì)角相等的四邊形是不是平行四邊形?(教師補(bǔ)充)
、且唤M對(duì)邊相等,一組對(duì)家相等及一組對(duì)邊相等,另一組對(duì)邊相等的四邊形是不是平行四邊形?(引導(dǎo)學(xué)生在草稿紙上畫圖思考,然后回答不是平行四邊形。因?yàn)檫吔遣荒茏C全等三角形)
、茸詫W(xué)課本例1思考:此例證明中,什么地方用了平行四邊形的“性質(zhì)”?什么地方用“判定”定理?
觀察下圖:
平行四邊形ABCD中,<A、<C的平行線分別交對(duì)邊于E和F,求證:AE=FC(怎樣證最簡(jiǎn)便?)
五、課堂小結(jié)
1.今天這節(jié)課我們學(xué)了什么?平行四這形的判定有哪些方法?試列舉之。
2.這些平行四邊形的判定方法中最基本的是哪一條?
3.平行四邊形的判定定理和性質(zhì)有什么關(guān)系?同一個(gè)證明題中應(yīng)注意什么地方用判定,什么地方性質(zhì)?
【平行四邊形的判定】相關(guān)文章:
平行四邊形判定教學(xué)反思04-22
數(shù)學(xué)《平行四邊形判定》教學(xué)反思11-16
矩形的判定教學(xué)反思02-26
平行線的判定教學(xué)反思03-20
《三角形全等的判定》教學(xué)反思04-29
三角形全等的判定說課稿11-19
三角形全等的判定教學(xué)反思03-17
直角三角形全等的判定教學(xué)反思03-28