- 相關(guān)推薦
平行四邊形及其性質(zhì)
教學(xué)建議
1.知識(shí)結(jié)構(gòu)
2.重點(diǎn)和難點(diǎn)分析
重點(diǎn):本節(jié)的重點(diǎn)是平行四邊形的概念和性質(zhì).雖然平行四邊形的概念在小學(xué)學(xué)過,但對(duì)于概念本質(zhì)屬性的理解并不深刻,為了加深學(xué)生對(duì)概念的理解,為以后學(xué)習(xí)特殊的平行四邊形打下基礎(chǔ),所以教師不要忽視平行四邊形的概念教學(xué).平行四邊形的性質(zhì)是以后證明四邊形問題的基礎(chǔ),也是學(xué)好全章的關(guān)鍵.尤其是平行四邊形性質(zhì)定理2的推論,推論的應(yīng)用有兩個(gè)條件:一個(gè)是夾在兩條平行線間;一個(gè)是平行線段,具備這兩個(gè)條件才能得出一個(gè)結(jié)論平行線段相等,缺少任何一個(gè)條件結(jié)論都不成立,這也是學(xué)生容易犯錯(cuò)的地方,教師要反復(fù)強(qiáng)調(diào).
難點(diǎn):本節(jié)的難點(diǎn)是平行四邊形性質(zhì)定理的靈活應(yīng)用.為了能熟練的應(yīng)用性質(zhì)定理及其推論,要把性質(zhì)定理和推論的條件和結(jié)論給學(xué)生講清楚,哪幾個(gè)條件,決定哪個(gè)結(jié)論,如何用數(shù)學(xué)符號(hào)表示即書寫格式,都要在講練中反復(fù)強(qiáng)化.
3.教法建議
。1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調(diào)動(dòng)學(xué)生的積極性.自己設(shè)計(jì)了一個(gè)動(dòng)畫,建議老師們用它作為本節(jié)的引入,既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又可以激活學(xué)生的思維.
。2)在生產(chǎn)或生活中,平行四邊形是常見圖形之一,教師可以多給學(xué)生提供一些平行四邊形的圖片,增加學(xué)生的感性認(rèn)識(shí),然后,讓他們自己總結(jié)出平行四邊形的定義,教師最后做總結(jié).平行四邊形是特殊的四邊形,要判定一個(gè)四邊形是不是平行四邊形,要判斷兩點(diǎn):首先是四邊形,然后四邊形的兩組對(duì)邊分別平行.平行四邊形的定義既是平行四邊形的一個(gè)判定方法,又是平行四邊形的一個(gè)性質(zhì).
。3)對(duì)于教師來說講課固然重要,但講完課后有目的的強(qiáng)化訓(xùn)練也是不可缺少的,通過做題,幫助學(xué)生更好的理解所講內(nèi)容,也就是我們平時(shí)說的要反思回顧,總結(jié)深化.
平行四邊形及其性質(zhì) 第一課時(shí)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.
2.掌握平行四邊形的性質(zhì)定理1、2.
3.并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.
(二)能力訓(xùn)練點(diǎn)
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉(zhuǎn)化思想.
2.通過推導(dǎo)平行四邊形的性質(zhì)定理的過程,培養(yǎng)學(xué)生的推導(dǎo)、論證能力和邏輯思維能力.
。ㄈ┑掠凉B透點(diǎn)
通過要求學(xué)生書寫規(guī)范,培養(yǎng)學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng).
。ㄋ模┟烙凉B透點(diǎn)
通過學(xué)習(xí),滲透幾何方法美和幾何語(yǔ)言美及圖形內(nèi)在美和結(jié)構(gòu)美
二、學(xué)法引導(dǎo)
閱讀、思考、講解、分析、轉(zhuǎn)化
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):平行四邊形性質(zhì)定理的應(yīng)用
2.教學(xué)難點(diǎn):正確理解兩條平行線間的距離的概念和運(yùn)用性質(zhì)定理2的推論;在計(jì)算或證明中綜合應(yīng)用本節(jié)前一章的知識(shí).
3.疑點(diǎn)及解決辦法:關(guān)于性質(zhì)定理2的推論;兩點(diǎn)的距離,點(diǎn)到直線的距離,兩平行直線中間的距離的區(qū)別與聯(lián)系,注重對(duì)概念的教學(xué),使學(xué)生深刻理解上述概念,搞清它們之間的關(guān)系;平行四邊形的高有關(guān)問題.
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
教具(做兩個(gè)全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師復(fù)習(xí)提問,學(xué)習(xí)思考口答;教師設(shè)疑引思,學(xué)生討論分析;師生共同總結(jié)結(jié)論,教師示范講解,學(xué)生達(dá)標(biāo)練習(xí)
第一課時(shí)
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么叫做四邊形?什么叫四邊形的一組對(duì)邊?
2.四邊形的兩組對(duì)邊在位置上有幾種可能?
。ń處熾S著學(xué)生回答畫出圖1)
圖1
【引入新課】
在四邊形中,我們常見的實(shí)用價(jià)值最大的就是平行四邊形,如汽車的防護(hù)鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質(zhì)呢?這是這節(jié)課研究的主要內(nèi)容(寫出課題).
【講解新課】
1.平行四邊形的定義:兩組對(duì)邊分別平行的四邊形叫做平行四邊形.
注意:一個(gè)四邊形必須具備有兩組對(duì)邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對(duì)邊分別平行”的一個(gè)四邊形.因此定義既是平行四邊形的一個(gè)判定方法(定義判定法)又是平行四邊形的一個(gè)性質(zhì).
2.平行四邊形的表示:平行四邊形用符號(hào)“ ”表示,如圖1就是平行四邊形 ,記作“ ”.
圖1
3.平行四邊形的性質(zhì)
講解平行四邊形性質(zhì)前必須使學(xué)生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(zhì)(共性),同時(shí)它又是特殊的四邊形,當(dāng)然還有其特性(個(gè)性),下面介紹的性質(zhì)就是其特性,這是一般四邊形所不具有的.
平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等.
平行四邊形性質(zhì)定理2:平行四邊形對(duì)邊相等.
(教具用兩個(gè)全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個(gè)定理的方法.如圖2)
圖2
如圖3, , .
所以四邊形 是平行四邊形,所以 .
由此得到
推論:夾在兩條平行線間的平行線段相等.
圖3
圖4
4.平行線間的距離
從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點(diǎn)到另一條直線的距離相等,如圖5.
我們把兩條平行線中一條直線上任意一點(diǎn)到另一條直線的距離,叫做平行線的距離.
圖5
注意:(1)兩相交直線無距離可言.
(2)連結(jié)兩點(diǎn)間的線段的長(zhǎng)度叫兩點(diǎn)間的距離,從直線外一點(diǎn)到一條直線的垂線段的長(zhǎng),叫點(diǎn)到直線的距離.兩條平行線中一條直線上任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區(qū)別與聯(lián)系.
例1 已知:如圖1, , .
求證:(1) ; ; .
(2)△ 的頂點(diǎn)分別是△ 各邊的中點(diǎn)(證法略),課堂提問(投影打出).
圖1
①平行四邊形兩鄰邊的比為2:5,周長(zhǎng)為28cm,則四條邊長(zhǎng)分別為___________.
②在 中,若 ,則 , .
【總結(jié)、擴(kuò)展】
1.小結(jié)
本堂所講的主要內(nèi)容有
。1)平行四邊形的概念,要理解這個(gè)概念的實(shí)質(zhì).
。2)平行四邊形的部分性質(zhì).
、訇P(guān)于邊的:對(duì)邊平行;對(duì)邊相等.
、陉P(guān)于角的:對(duì)角相等;鄰角互補(bǔ).
。3)“兩平行線的距離”是一定值,不隨垂線段的位置改變,即兩平行線間的距離處處相等.
2.思考:如圖.已知: 平面 , , 求證: .
八、布置作業(yè)
教材P141.2 (1)、(2)、(3) P142中 3(1)
九、板書設(shè)計(jì)
十、隨堂練習(xí)
教材P.133中1、2、3
補(bǔ)充1.在 中 (1)若 ,則 度, 度, 度;(2)若 ,則 度, 度;(3)若 ,則 度, 度.
2. 中,周長(zhǎng)為 ,△ 的周長(zhǎng)比△ 周長(zhǎng)多 則 , .
3. 中, 的平分線分 為長(zhǎng)是 和 的兩線段則 的周長(zhǎng)是___________cm.
【平行四邊形及其性質(zhì)】相關(guān)文章:
鹽的化學(xué)性質(zhì)及其應(yīng)用說課稿06-07
等式的性質(zhì)教學(xué)反思08-24
《小數(shù)的性質(zhì)》教學(xué)反思08-22
數(shù)學(xué)小數(shù)的性質(zhì)教案03-04
等式的性質(zhì)教學(xué)反思03-24
菱形的性質(zhì)教學(xué)反思04-22